72 research outputs found

    Megalencephalic Leukoencephalopathy: Insights Into Pathophysiology and Perspectives for Therapy

    Get PDF
    Megalencephalic leukoencephalopathy with subcortical cysts (MLC) is a rare genetic disorder belonging to the group of vacuolating leukodystrophies. It is characterized by megalencephaly, loss of motor functions, epilepsy, and mild mental decline. In brain biopsies of MLC patients, vacuoles were observed in myelin and in astrocytes surrounding blood vessels. It is mainly caused by recessive mutations in MLC1 and HEPACAM (also called GLIALCAM) genes. These disease variants are called MLC1 and MLC2A with both types of patients sharing the same clinical phenotype. Besides, dominant mutations in HEPACAM were also identified in a subtype of MLC patients (MLC2B) with a remitting phenotype. MLC1 and GlialCAM proteins form a complex mainly expressed in brain astrocytes at the gliovascular interface and in Bergmann glia at the cerebellum. Both proteins regulate several ion channels and transporters involved in the control of ion and water fluxes in glial cells, either directly influencing their location and function, or indirectly regulating associated signal transduction pathways. However, the MLC1/GLIALCAM complex function and the related pathological mechanisms leading to MLC are still unknown. It has been hypothesized that, in MLC, the role of glial cells in brain ion homeostasis is altered in both physiological and inflammatory conditions. There is no therapy for MLC patients, only supportive treatment. As MLC2B patients show an MLC reversible phenotype, we speculated that the phenotype of MLC1 and MLC2A patients could also be mitigated by the re-introduction of the correct gene even at later stages. To prove this hypothesis, we injected in the cerebellar subarachnoid space of Mlc1 knockout mice an adeno-associated virus (AAV) coding for human MLC1 under the control of the glial-fibrillary acidic protein promoter. MLC1 expression in the cerebellum extremely reduced myelin vacuolation at all ages in a dose-dependent manner. This study could be considered as the first preclinical approach for MLC. We also suggest other potential therapeutic strategies in this review

    Megalencephalic Leukoencephalopathy : Insights Into Pathophysiology and Perspectives for Therapy

    Get PDF
    UDHEBRONMegalencephalic leukoencephalopathy with subcortical cysts (MLC) is a rare genetic disorder belonging to the group of vacuolating leukodystrophies. It is characterized by megalencephaly, loss of motor functions, epilepsy, and mild mental decline. In brain biopsies of MLC patients, vacuoles were observed in myelin and in astrocytes surrounding blood vessels. It is mainly caused by recessive mutations in MLC1 and HEPACAM (also called GLIALCAM) genes. These disease variants are called MLC1 and MLC2A with both types of patients sharing the same clinical phenotype. Besides, dominant mutations in HEPACAM were also identified in a subtype of MLC patients (MLC2B) with a remitting phenotype. MLC1 and GlialCAM proteins form a complex mainly expressed in brain astrocytes at the gliovascular interface and in Bergmann glia at the cerebellum. Both proteins regulate several ion channels and transporters involved in the control of ion and water fluxes in glial cells, either directly influencing their location and function, or indirectly regulating associated signal transduction pathways. However, the MLC1/GLIALCAM complex function and the related pathological mechanisms leading to MLC are still unknown. It has been hypothesized that, in MLC, the role of glial cells in brain ion homeostasis is altered in both physiological and inflammatory conditions. There is no therapy for MLC patients, only supportive treatment. As MLC2B patients show an MLC reversible phenotype, we speculated that the phenotype of MLC1 and MLC2A patients could also be mitigated by the re-introduction of the correct gene even at later stages. To prove this hypothesis, we injected in the cerebellar subarachnoid space of Mlc1 knockout mice an adeno-associated virus (AAV) coding for human MLC1 under the control of the glial-fibrillary acidic protein promoter. MLC1 expression in the cerebellum extremely reduced myelin vacuolation at all ages in a dose-dependent manner. This study could be considered as the first preclinical approach for MLC. We also suggest other potential therapeutic strategies in this review

    Functional characterization of the human mariner transposon Hsmar2

    Get PDF
    DNA transposons are mobile elements with the ability to mobilize and transport genetic information between different chromosomal loci. Unfortunately, most transposons copies are currently inactivated, little is known about mariner elements in humans despite their role in the evolution of the human genome, even though the Hsmar2 transposon is associated to hotspots for homologous recombination involved in human genetic disorders as Charcot-Marie-Tooth, Prader-Willi/Angelman, and Williams syndromes. This manuscript describes the functional characterization of the human HSMAR2 transposase generated from fossil sequences and shows that the native HSMAR2 is active in human cells, but also in bacteria, with an efficiency similar to other mariner elements. We observe that the sub-cellular localization of HSMAR2 is dependent on the host cell type, and is cytotoxic when overexpressed in HeLa cells. Finally, we also demonstrate that the binding of HSMAR2 to its own ITRs is specific, and that the excision reaction leaves non-canonical footprints both in bacteria and eukaryotic cells

    Therapeutic Effect of IL-21 Blockage by Gene Therapy in Experimental Autoimmune Encephalomyelitis

    Get PDF
    Soluble receptor; Multiple sclerosisReceptor soluble; Esclerosis múltipleReceptor soluble; Esclerosi múltipleThe pathogenic role of the interleukin 21 (IL-21) in different autoimmune diseases, such as multiple sclerosis (MS), has been extensively studied. However, its pleiotropic nature makes it a cytokine that may exhibit different activity depending on the immunological stage of the disease. In this study, we developed a gene therapy strategy to block the interaction between IL-21 and its receptor (IL-21R) by using adeno-associated vectors (AAV) encoding a new soluble cytokine receptor (sIL21R) protein. We tested this strategy in a murine model of experimental autoimmune encephalomyelitis (EAE), obtaining different clinical effects depending on the time at which the treatment was applied. Although the administration of the treatment during the development of the immune response was counterproductive, the preventive administration of the therapeutic vectors showed a protective effect by reducing the number of animals that developed the disease, as well as an improvement at the histopathological level and a modification of the immunological profile of the animals treated with the AAV8.sIL21R. The beneficial effect of the treatment was also observed when inducing the expression of the therapeutic molecule once the first neurological signs were established in a therapeutic approach with a doxycyline (Dox)-inducible expression system. All these clinical results highlight the pleiotropicity of this cytokine in the different clinical stages and its key role in the EAE immunopathogenesis.Open Access Funding provided by Universitat Autonoma de Barcelona. This project was supported by the Ministerio Ciencia Innovación, retos Sociedad (PI15/0271). A.E was a recipient of a VHIR fellowship

    Cerebellar astrocyte transduction as gene therapy for megalencephalic leukoencephalopathy

    Get PDF
    Megalencephalic leukoencephalopathy with subcortical cysts (MLC) is a rare genetic disorder belonging to the group of vacuolating leukodystrophies. It is characterized by megalencephaly, loss of motor functions, epilepsy, and mild mental decline. In brain biopsies of MLC patients, vacuoles were observed in myelin and in astrocytes surrounding blood vessels. There is no therapy for MLC patients, only supportive treatment. We show here a preclinical gene therapy approach for MLC using the Mlc1 knock-out mouse. An adeno-associated virus coding for human MLC1 under the control of the glial fibrillary acidic protein promoter was injected in the cerebellar subarachnoid space of Mlc1 knock-out and wild-type animals at 2 months of age, before the onset of the disease, as a preventive approach. We also tested a therapeutic strategy by injecting the animals at 5 months, once the histopathological abnormalities are starting, or at 15 months, when they have progressed to a more severe pathology. MLC1 expression in the cerebellum restored the adhesion molecule GlialCAM and the chloride channel ClC-2 localization in Bergmann glia, which both are mislocalized in Mlc1 knock-out model. More importantly, myelin vacuolation was extremely reduced in treated mice at all ages and correlated with the amount of expressed MLC1 in Bergmann glia, indicating not only the preventive potential of this strategy but also its therapeutic capacity. In summary, here we provide the first therapeutic approach for patients affected with MLC. This work may have also implications to treat other diseases affecting motor function such as ataxias

    A Transgenic Model Reveals the Role of Klotho in Pancreatic Cancer Development and Paves the Way for New Klotho-Based Therapy

    Get PDF
    Klotho; Càncer de pàncrees; Supressor del tumorKlotho; Cáncer de páncreas; Supresor de tumorKlotho; Pancreatic cancer; Tumor suppressorKlotho is an anti-aging transmembrane protein, which can be shed and can function as a hormone. Accumulating data indicate that klotho is a tumor suppressor in a wide array of malignancies, and designate the subdomain KL1 as the active region of the protein towards this activity. We aimed to study the role of klotho as a tumor suppressor in pancreatic ductal adenocarcinoma (PDAC). Bioinformatics analyses of The Cancer Genome Atlas (TCGA) datasets revealed a correlation between the survival of PDAC patients, levels of klotho expression, and DNA methylation, and demonstrated a unique hypermethylation pattern of klotho in pancreatic tumors. The in vivo effects of klotho and KL1 were examined using three mouse models. Employing a novel genetic model, combining pancreatic klotho knockdown with a mutation in Kras, the lack of klotho contributed to PDAC generation and decreased mousece survival. In a xenograft model, administration of viral particles carrying sKL, a spliced klotho isoform containing the KL1 domain, inhibited pancreatic tumors. Lastly, treatment with soluble sKL prolonged survival of Pdx1-Cre; KrasG12D/+;Trp53R172H/+ (KPC) mice, a model known to recapitulate human PDAC. In conclusion, this study provides evidence that klotho is a tumor suppressor in PDAC. Furthermore, these data suggest that the levels of klotho expression and DNA methylation could have prognostic value in PDAC patients, and that administration of exogenous sKL may serve as a novel therapeutic strategy to treat PDAC.This project was funded by the The Sami and Tova Sagol Foundation for the Study of Aging, the Margaret Stultz foundation for Pancreatic Cancer Research, the Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel; Ministerio de Ciencia e Innovación ‘Proyectos I+D+I 2019, to M.C., (grant number PID2019-104034RB-I00) and by the TASMC excellence fund. to I.W

    ATG5 overexpression is neuroprotective and attenuates cytoskeletal and vesicle-trafficking alterations in axotomized motoneurons

    Get PDF
    Injured neurons should engage endogenous mechanisms of self-protection to limit neurodegeneration. Enhancing efficacy of these mechanisms or correcting dysfunctional pathways may be a successful strategy for inducing neuroprotection. Spinal motoneurons retrogradely degenerate after proximal axotomy due to mechanical detachment (avulsion) of the nerve roots, and this limits recovery of nervous system function in patients after this type of trauma. In a previously reported proteomic analysis, we demonstrated that autophagy is a key endogenous mechanism that may allow motoneuron survival and regeneration after distal axotomy and suture of the nerve. Herein, we show that autophagy flux is dysfunctional or blocked in degenerated motoneurons after root avulsion. We also found that there were abnormalities in anterograde/retrograde motor proteins, key secretory pathway factors, and lysosome function. Further, LAMP1 protein was missorted and underglycosylated as well as the proton pump v-ATPase. In vitro modeling revealed how sequential disruptions in these systems likely lead to neurodegeneration. In vivo, we observed that cytoskeletal alterations, induced by a single injection of nocodazole, were sufficient to promote neurodegeneration of avulsed motoneurons. Besides, only pre-treatment with rapamycin, but not post-treatment, neuroprotected after nerve root avulsion. In agreement, overexpressing ATG5 in injured motoneurons led to neuroprotection and attenuation of cytoskeletal and trafficking-related abnormalities. These discoveries serve as proof of concept for autophagy-target therapy to halting the progression of neurodegenerative processes

    AAV-mediated expression of secreted and transmembrane αKlotho isoforms rescues relevant aging hallmarks in senescent SAMP8 mice

    Get PDF
    Senescence represents a stage in life associated with elevated incidence of morbidity and increased risk of mortality due to the accumulation of molecular alterations and tissue dysfunction, promoting a decrease in the organism's protective systems. Thus, aging presents molecular and biological hallmarks, which include chronic inflammation, epigenetic alterations, neuronal dysfunction, and worsening of physical status. In this context, we explored the AAV9-mediated expression of the two main isoforms of the aging-protective factor Klotho (KL) as a strategy to prevent these general age-related features using the senescence-accelerated mouse prone 8 (SAMP8) model. Both secreted and transmembrane KL isoforms improved cognitive performance, physical state parameters, and different molecular variables associated with aging. Epigenetic landscape was recovered for the analyzed global markers DNA methylation (5-mC), hydroxymethylation (5-hmC), and restoration occurred in the acetylation levels of H3 and H4. Gene expression of pro- and anti-inflammatory mediators in central nervous system such as TNF-α and IL-10, respectively, had improved levels, which were comparable to the senescence-accelerated-mouse resistant 1 (SAMR1) healthy control. Additionally, this improvement in neuroinflammation was supported by changes in the histological markers Iba1, GFAP, and SA β-gal. Furthermore, bone tissue structural variables, especially altered during senescence, recovered in SAMP8 mice to SAMR1 control values after treatment with both KL isoforms. This work presents evidence of the beneficial pleiotropic role of Klotho as an anti-aging therapy as well as new specific functions of the KL isoforms for the epigenetic regulation and aged bone structure alteration in an aging mouse model. Intraventricular administration of AAV vectors expressing secreted and transmembrane Klotho isoforms, rescued accelerated aging phenotype of SAMP8 mice. An improvement in cognitive and physical performance, recovery of epigenetic, inflammatory and senescence markers, as well as structural changes in long bones of these mice was detected

    Differential toxicity profile of secreted and processed α-Klotho expression over mineral metabolism and bone microstructure

    Get PDF
    The aging-protective gene α-Klotho (KL) produces two main transcripts. The full-length mRNA generates a transmembrane protein that after proteolytic ectodomain shedding can be detected in serum as processed Klotho (p-KL), and a shorter transcript which codes for a putatively secreted protein (s-KL). Both isoforms exhibit potent pleiotropic beneficial properties, although previous reports showed negative side effects on mineral homeostasis after increasing p-KL concentration exogenously. Here, we expressed independently both isoforms using gene transfer vectors, to assess s-KL effects on mineral metabolism. While mice treated with p-KL presented altered expression of several kidney ion channels, as well as altered levels of Pi and Ca2+ in blood, s-KL treated mice had levels comparable to Null-treated control mice. Besides, bone gene expression of Fgf23 showed a fourfold increase after p-KL treatment, effects not observed with the s-KL isoform. Similarly, bone microstructure parameters of p-KL-treated mice were significantly worse than in control animals, while this was not observed for s-KL, which showed an unexpected increase in trabecular thickness and cortical mineral density. As a conclusion, s-KL (but not p-KL) is a safe therapeutic strategy to exploit KL anti-aging protective effects, presenting no apparent negative effects over mineral metabolism and bone microstructure

    Proteomic quantitative study of dorsal root ganglia and sciatic nerve in type 2 diabetic mice

    Get PDF
    Diabetes; Dorsal root ganglia; Sciatic nerveDiabetes; Ganglios de la raíz dorsal; Nervio ciáticoDiabetis; Ganglis de l'arrel dorsal; Nervi ciàticObjective Peripheral neuropathy is the most common and debilitating complication of type 2 diabetes, leading to sensory loss, dysautonomia, hyperalgesia, and spontaneous noxious sensations. Despite the clinical and economic burden of diabetic neuropathy, no effective treatment is available. More preclinical research must be conducted in order to gain further understanding of the aetiology of the disease and elucidate new therapeutic targets. Methods The proteome of lumbar dorsal root ganglia and sciatic nerve of BKS-db/db mice, which contain a mutation of the leptin receptor and are an established type 2 diabetes model, was characterized for the first time by tandem mass tag labelling and mass spectrometry analysis. Results Proteomic analysis showed differentially expressed proteins grouped into functional clusters in db/db peripheral nerves compared to control mice, underlining reduced glycolytic and TCA cycle metabolism, higher lipid catabolism, upregulation of muscle-like proteins in DRG and downregulation in SCN, increased cytoskeleton-related proteins, a mild dysregulation of folding chaperones, activation of acute-phase and inflammatory response, and alterations in glutathione metabolism and oxidative stress related proteins. Conclusions Our data validate previous transcriptomic and metabolomic results and uncover new pathways altered in diabetic neuropathy. Our results point out that energetic deficiency could represent the main mechanism of neurodegeneration observed in diabetic neuropathy. These findings may provide important information to select appropriate targets to develop new therapeutic strategies.This work was supported by the Fundació Marató TV3 (grant 201607.10) and 2017 SGR1468 to M.C. M.L.J, A.O and S.V are recipients of predoctoral fellowships from Generalitat de Catalunya (2019FI_B2 00061; 2020FI_B2 00037 and 2020FI_B1 00054, respectively). The authors declare that there is no conflict of interest
    corecore