752 research outputs found

    Thirty-two Goldbach Variations

    Full text link
    We give thirty-two diverse proofs of a small mathematical gem--the fundamental Euler sum identity zeta(2,1)=zeta(3) =8zeta(\bar 2,1). We also discuss various generalizations for multiple harmonic (Euler) sums and some of their many connections, thereby illustrating both the wide variety of techniques fruitfully used to study such sums and the attraction of their study.Comment: v1: 34 pages AMSLaTeX. v2: 41 pages AMSLaTeX. New introductory material added and material on inequalities, Hilbert matrix and Witten zeta functions. Errors in the second section on Complex Line Integrals are corrected. To appear in International Journal of Number Theory. Title change

    Global convergence of a non-convex Douglas-Rachford iteration

    Get PDF
    We establish a region of convergence for the proto-typical non-convex Douglas-Rachford iteration which finds a point on the intersection of a line and a circle. Previous work on the non-convex iteration [2] was only able to establish local convergence, and was ineffective in that no explicit region of convergence could be given

    The Lax conjecture is true

    Full text link
    In 1958 Lax conjectured that hyperbolic polynomials in three variables are determinants of linear combinations of three symmetric matrices. This conjecture is equivalent to a recent observation of Helton and Vinnikov.Comment: 7 pages, Proceedings to the AMS, to appear. Added background materia

    Analytical expressions of 3 and 4-loop sunrise Feynman integrals and 4-dimensional lattice integrals

    Full text link
    In this paper we continue the work begun in 2002 on the identification of the analytical expressions of Feynman integrals which require the evaluation of multiple elliptic integrals. We rewrite and simplify the analytical expression of the 3-loop self-mass integral with three equal masses and on-shell external momentum. We collect and analyze a number of results on double and triple elliptic integrals. By using very high-precision numerical fits, for the first time we are able to identify a very compact analytical expression for the 4-loop on-shell self-mass integral with 4 equal masses, that is one of the master integrals of the 4-loop electron g-2. Moreover, we fit the analytical expressions of some integrals which appear in lattice perturbation theory, and in particular the 4-dimensional generalized Watson integral.Comment: 13 pages, 1 figure, LaTex; v2: some rephrasing of text; v3: reference added, minor modifications; v4: checks of lattice integrals up to 2400 digits; some modifications of text; version accepted for publication in IJMPA, needs the document class ws-ijmpa.cl

    Mathematics for structure functions

    Get PDF
    We show some of the mathematics that is being developed for the computation of deep inelastic structure functions to three loops. These include harmonic sums, harmonic polylogarithms and a class of difference equations that can be solved with the use of harmonic sums.Comment: 6 pages LaTeX, uses axodraw.sty and npb.sty (included

    Expansion around half-integer values, binomial sums and inverse binomial sums

    Full text link
    I consider the expansion of transcendental functions in a small parameter around rational numbers. This includes in particular the expansion around half-integer values. I present algorithms which are suitable for an implementation within a symbolic computer algebra system. The method is an extension of the technique of nested sums. The algorithms allow in addition the evaluation of binomial sums, inverse binomial sums and generalizations thereof.Comment: 21 page

    Strong duality in conic linear programming: facial reduction and extended duals

    Full text link
    The facial reduction algorithm of Borwein and Wolkowicz and the extended dual of Ramana provide a strong dual for the conic linear program (P)sup<c,x>AxKb (P) \sup {<c, x> | Ax \leq_K b} in the absence of any constraint qualification. The facial reduction algorithm solves a sequence of auxiliary optimization problems to obtain such a dual. Ramana's dual is applicable when (P) is a semidefinite program (SDP) and is an explicit SDP itself. Ramana, Tuncel, and Wolkowicz showed that these approaches are closely related; in particular, they proved the correctness of Ramana's dual using certificates from a facial reduction algorithm. Here we give a clear and self-contained exposition of facial reduction, of extended duals, and generalize Ramana's dual: -- we state a simple facial reduction algorithm and prove its correctness; and -- building on this algorithm we construct a family of extended duals when KK is a {\em nice} cone. This class of cones includes the semidefinite cone and other important cones.Comment: A previous version of this paper appeared as "A simple derivation of a facial reduction algorithm and extended dual systems", technical report, Columbia University, 2000, available from http://www.unc.edu/~pataki/papers/fr.pdf Jonfest, a conference in honor of Jonathan Borwein's 60th birthday, 201

    Systems of Linear Equations over F2\mathbb{F}_2 and Problems Parameterized Above Average

    Full text link
    In the problem Max Lin, we are given a system Az=bAz=b of mm linear equations with nn variables over F2\mathbb{F}_2 in which each equation is assigned a positive weight and we wish to find an assignment of values to the variables that maximizes the excess, which is the total weight of satisfied equations minus the total weight of falsified equations. Using an algebraic approach, we obtain a lower bound for the maximum excess. Max Lin Above Average (Max Lin AA) is a parameterized version of Max Lin introduced by Mahajan et al. (Proc. IWPEC'06 and J. Comput. Syst. Sci. 75, 2009). In Max Lin AA all weights are integral and we are to decide whether the maximum excess is at least kk, where kk is the parameter. It is not hard to see that we may assume that no two equations in Az=bAz=b have the same left-hand side and n=rankAn={\rm rank A}. Using our maximum excess results, we prove that, under these assumptions, Max Lin AA is fixed-parameter tractable for a wide special case: m2p(n)m\le 2^{p(n)} for an arbitrary fixed function p(n)=o(n)p(n)=o(n). Max rr-Lin AA is a special case of Max Lin AA, where each equation has at most rr variables. In Max Exact rr-SAT AA we are given a multiset of mm clauses on nn variables such that each clause has rr variables and asked whether there is a truth assignment to the nn variables that satisfies at least (12r)m+k2r(1-2^{-r})m + k2^{-r} clauses. Using our maximum excess results, we prove that for each fixed r2r\ge 2, Max rr-Lin AA and Max Exact rr-SAT AA can be solved in time 2O(klogk)+mO(1).2^{O(k \log k)}+m^{O(1)}. This improves 2O(k2)+mO(1)2^{O(k^2)}+m^{O(1)}-time algorithms for the two problems obtained by Gutin et al. (IWPEC 2009) and Alon et al. (SODA 2010), respectively

    Integrals Over Polytopes, Multiple Zeta Values and Polylogarithms, and Euler's Constant

    Full text link
    Let TT be the triangle with vertices (1,0), (0,1), (1,1). We study certain integrals over TT, one of which was computed by Euler. We give expressions for them both as a linear combination of multiple zeta values, and as a polynomial in single zeta values. We obtain asymptotic expansions of the integrals, and of sums of certain multiple zeta values with constant weight. We also give related expressions for Euler's constant. In the final section, we evaluate more general integrals -- one is a Chen (Drinfeld-Kontsevich) iterated integral -- over some polytopes that are higher-dimensional analogs of TT. This leads to a relation between certain multiple polylogarithm values and multiple zeta values.Comment: 19 pages, to appear in Mat Zametki. Ver 2.: Added Remark 3 on a Chen (Drinfeld-Kontsevich) iterated integral; simplified Proposition 2; gave reference for (19); corrected [16]; fixed typ

    The Borwein brothers, Pi and the AGM

    Full text link
    We consider some of Jonathan and Peter Borweins' contributions to the high-precision computation of π\pi and the elementary functions, with particular reference to their book "Pi and the AGM" (Wiley, 1987). Here "AGM" is the arithmetic-geometric mean of Gauss and Legendre. Because the AGM converges quadratically, it can be combined with fast multiplication algorithms to give fast algorithms for the nn-bit computation of π\pi, and more generally the elementary functions. These algorithms run in almost linear time O(M(n)logn)O(M(n)\log n), where M(n)M(n) is the time for nn-bit multiplication. We outline some of the results and algorithms given in Pi and the AGM, and present some related (but new) results. In particular, we improve the published error bounds for some quadratically and quartically convergent algorithms for π\pi, such as the Gauss-Legendre algorithm. We show that an iteration of the Borwein-Borwein quartic algorithm for π\pi is equivalent to two iterations of the Gauss-Legendre quadratic algorithm for π\pi, in the sense that they produce exactly the same sequence of approximations to π\pi if performed using exact arithmetic.Comment: 24 pages, 6 tables. Changed style file and reformatted algorithms in v
    corecore