35 research outputs found
Duloxetine by modulating the Akt/GSK3 signaling pathways has neuroprotective effects against methamphetamine-induced neurodegeneration and cognition impairment in rats
Background: The neuroprotective effects of duloxetine, as an antidepressant agent, and the neurodegenerative effects of methamphetamine have been shown in previous studies. Nonetheless, their exact neurochemical and behavioral effects are still unclear. In the current study, we sought to clarify the molecular mechanisms involved in the protective effects of duloxetine against methamphetamine-induced neurodegeneration. Methods: Forty adult male rats were divided randomly into 5 groups. Group 1 was the negative control and received normal saline, Group 2 was the positive control and received methamphetamine, and Groups 3, 4, and 5 were concurrently treated with methamphetamine (10 mg/kg) and duloxetine (5, 10, and 15 mg/kg, respectively). All the treatments were continued for 21 days. Between days 17 and 21, the Morris Water Maze (MWM) was used to assess learning and memory in the treated groups. On day 22, the hippocampus was isolated from each rat and oxidative, antioxidant, and inflammatory factors were measured. Additionally, the expression levels of the total and phosphorylated forms of the Akt and GSK3 proteins were evaluated via the ELISA method. Results: Duloxetine in all the administered doses ameliorated the effects of the methamphetamine-induced cognition impairment in the MWM. The chronic abuse of methamphetamine increased malondialdehyde, tumor necrosis factor-α, and interleukin-1β, while it decreased superoxide dismutase, glutathione peroxidase, and glutathione reductase activities. Duloxetine not only prevented these malicious effects of methamphetamine but also activated the expression of Akt (both forms) and inhibited the expression of GSK3 (both forms) in the methamphetamine-treated rats. Conclusion: We conclude that the Akt/GSK3 signaling pathways might have a critical role in the protective effects of duloxetine against methamphetamine-induced neurodegeneration and cognition impairment. © 2019, Shiraz University of Medical Sciences. All rights reserved
A Relativistic Mean Field Model for Entrainment in General Relativistic Superfluid Neutron Stars
General relativistic superfluid neutron stars have a significantly more
intricate dynamics than their ordinary fluid counterparts. Superfluidity allows
different superfluid (and superconducting) species of particles to have
independent fluid flows, a consequence of which is that the fluid equations of
motion contain as many fluid element velocities as superfluid species. Whenever
the particles of one superfluid interact with those of another, the momentum of
each superfluid will be a linear combination of both superfluid velocities.
This leads to the so-called entrainment effect whereby the motion of one
superfluid will induce a momentum in the other superfluid. We have constructed
a fully relativistic model for entrainment between superfluid neutrons and
superconducting protons using a relativistic mean field model
for the nucleons and their interactions. In this context there are two notions
of ``relativistic'': relativistic motion of the individual nucleons with
respect to a local region of the star (i.e. a fluid element containing, say, an
Avogadro's number of particles), and the motion of fluid elements with respect
to the rest of the star. While it is the case that the fluid elements will
typically maintain average speeds at a fraction of that of light, the
supranuclear densities in the core of a neutron star can make the nucleons
themselves have quite high average speeds within each fluid element. The
formalism is applied to the problem of slowly-rotating superfluid neutron star
configurations, a distinguishing characteristic being that the neutrons can
rotate at a rate different from that of the protons.Comment: 16 pages, 5 figures, submitted to PR
R-modes of neutron stars with the superfluid core
We investigate the modal properties of the -modes of rotating neutron
stars with the core filled with neutron and proton superfluids, taking account
of entrainment effects between the superfluids. The stability of the -modes
against gravitational radiation reaction is also examined considering viscous
dissipation due to shear and a damping mechanism called mutual friction between
the superfluids in the core. We find the -modes in the superfluid core are
split into ordinary -modes and superfluid -modes, which we call,
respectively, - and -modes. The two superfluids in the core flow
together for the -modes, while they counter-move for the -modes. For
the -modes, the coefficient is equal to , almost independent of
the parameter that parameterizes the entrainment effects between the
superfluids, where is the angular frequency of rotation, the
oscillation frequency observed in the corotating frame of the star, and
and are the indices of the spherical harmonic function
representing the angular dependence of the -modes. For the -modes, on
the other hand, is equal to at
(no entrainment), and it almost linearly increases as is increased from
. The mutual friction in the superfluid core is found ineffective to
stabilize the -mode instability caused by the -mode except in a few
narrow regions of . The -mode instability caused by the -modes,
on the other hand, is extremely weak and easily damped by dissipative processes
in the star.Comment: 22 pages, 22 figures, accepted for publication in the Astrophysical
Journa
Relativistic Two-stream Instability
We study the (local) propagation of plane waves in a relativistic,
non-dissipative, two-fluid system, allowing for a relative velocity in the
"background" configuration. The main aim is to analyze relativistic two-stream
instability. This instability requires a relative flow -- either across an
interface or when two or more fluids interpenetrate -- and can be triggered,
for example, when one-dimensional plane-waves appear to be left-moving with
respect to one fluid, but right-moving with respect to another. The dispersion
relation of the two-fluid system is studied for different two-fluid equations
of state: (i) the "free" (where there is no direct coupling between the fluid
densities), (ii) coupled, and (iii) entrained (where the fluid momenta are
linear combinations of the velocities) cases are considered in a
frame-independent fashion (eg. no restriction to the rest-frame of either
fluid). As a by-product of our analysis we determine the necessary conditions
for a two-fluid system to be causal and absolutely stable and establish a new
constraint on the entrainment.Comment: 15 pages, 2 eps-figure
Slowly Rotating General Relativistic Superfluid Neutron Stars with Relativistic Entrainment
Neutron stars that are cold enough should have two or more
superfluids/supercondutors in their inner crusts and cores. The implication of
superfluidity/superconductivity for equilibrium and dynamical neutron star
states is that each individual particle species that forms a condensate must
have its own, independent number density current and equation of motion that
determines that current. An important consequence of the quasiparticle nature
of each condensate is the so-called entrainment effect, i.e. the momentum of a
condensate is a linear combination of its own current and those of the other
condensates. We present here the first fully relativistic modelling of slowly
rotating superfluid neutron stars with entrainment that is accurate to the
second-order in the rotation rates. The stars consist of superfluid neutrons,
superconducting protons, and a highly degenerate, relativistic gas of
electrons. We use a relativistic - mean field model for the
equation of state of the matter and the entrainment. We determine the effect of
a relative rotation between the neutrons and protons on a star's total mass,
shape, and Kepler, mass-shedding limit.Comment: 30 pages, 10 figures, uses ReVTeX
R-Modes in Superfluid Neutron Stars
The analogs of r-modes in superfluid neutron stars are studied here. These
modes, which are governed primarily by the Coriolis force, are identical to
their ordinary-fluid counterparts at the lowest order in the small
angular-velocity expansion used here. The equations that determine the next
order terms are derived and solved numerically for fairly realistic superfluid
neutron-star models. The damping of these modes by superfluid ``mutual
friction'' (which vanishes at the lowest order in this expansion) is found to
have a characteristic time-scale of about 10^4 s for the m=2 r-mode in a
``typical'' superfluid neutron-star model. This time-scale is far too long to
allow mutual friction to suppress the recently discovered gravitational
radiation driven instability in the r-modes. However, the strength of the
mutual friction damping depends very sensitively on the details of the
neutron-star core superfluid. A small fraction of the presently acceptable
range of superfluid models have characteristic mutual friction damping times
that are short enough (i.e. shorter than about 5 s) to suppress the
gravitational radiation driven instability completely.Comment: 15 pages, 8 figure
r-modes in Relativistic Superfluid Stars
We discuss the modal properties of the -modes of relativistic superfluid
neutron stars, taking account of the entrainment effects between superfluids.
In this paper, the neutron stars are assumed to be filled with neutron and
proton superfluids and the strength of the entrainment effects between the
superfluids are represented by a single parameter . We find that the
basic properties of the -modes in a relativistic superfluid star are very
similar to those found for a Newtonian superfluid star. The -modes of a
relativistic superfluid star are split into two families, ordinary fluid-like
-modes (-mode) and superfluid-like -modes (-mode). The two
superfluids counter-move for the -modes, while they co-move for the
-modes. For the -modes, the quantity is
almost independent of the entrainment parameter , where and
are the azimuthal wave number and the oscillation frequency observed by an
inertial observer at spatial infinity, respectively. For the -modes, on
the other hand, almost linearly increases with increasing . It
is also found that the radiation driven instability due to the -modes is
much weaker than that of the -modes because the matter current associated
with the axial parity perturbations almost completely vanishes.Comment: 14 pages, 4 figures. To appear in Physical Review
Nonextensive thermal sources of cosmic rays?
The energy spectrum of cosmic rays (CR) exhibits power-like behavior with a
very characteristic "knee" structure. We consider a possibility that such a
spectrum could be generated by some specific nonstatistical temperature
fluctuations in the source of CR with the "knee" structure reflecting an abrupt
change of the pattern of such fluctuations. This would result in a generalized
nonextensive statistical model for the production of CR. The possible physical
mechanisms leading to these effects are discussed together with the resulting
chemical composition of the CR, which follows the experimentally observed
abundance of nuclei.Comment: 16 pages, 3 figures, rewritten and updated version, to be published
in Centr. Eur. J. Phy