52 research outputs found

    An Introduction to Data Analysis in Asteroseismology

    Full text link
    A practical guide is presented to some of the main data analysis concepts and techniques employed contemporarily in the asteroseismic study of stars exhibiting solar-like oscillations. The subjects of digital signal processing and spectral analysis are introduced first. These concern the acquisition of continuous physical signals to be subsequently digitally analyzed. A number of specific concepts and techniques relevant to asteroseismology are then presented as we follow the typical workflow of the data analysis process, namely, the extraction of global asteroseismic parameters and individual mode parameters (also known as peak-bagging) from the oscillation spectrum.Comment: Lecture presented at the IVth Azores International Advanced School in Space Sciences on "Asteroseismology and Exoplanets: Listening to the Stars and Searching for New Worlds" (arXiv:1709.00645), which took place in Horta, Azores Islands, Portugal in July 201

    Frequency dependence of Delta_nu of solar-like oscillators investigated: Influence of HeII ionization zone

    Full text link
    Oscillations in solar-like oscillators tend to follow an approximately regular pattern in which oscillation modes of a certain degree and consecutive order appear at regular intervals in frequency, i.e. the so-called large frequency separation. This is true to first order approximation for acoustic modes. However, to a second order approximation it is evident that the large frequency separation changes as a function of frequency. This frequency dependence has been seen in the Sun and in other main-sequence stars. However, from observations of giant stars, this effect seemed to be less pronounced. We investigate the difference in frequency dependence of the large frequency separation between main-sequence and giant stars using YREC evolutionary models.Comment: 4 pages, 1 figure, to appear in Astrophysics and Space Science Proceedings series of the 20th Stellar pulsation conference held in Granada (Spain) from 6 to 10 September 201

    Deciphering Spectral Fingerprints of Habitable Extrasolar Planets

    Get PDF
    In this paper we discuss how we can read a planets spectrum to assess its habitability and search for the signatures of a biosphere. After a decade rich in giant exoplanet detections, observation techniques have now reached the ability to find planets of less than 10 MEarth (so called Super-Earths) that may potentially be habitable. How can we characterize those planets and assess if they are habitable? The new field of extrasolar planet search has shown an extraordinary ability to combine research by astrophysics, chemistry, biology and geophysics into a new and exciting interdisciplinary approach to understand our place in the universe. The results of a first generation mission will most likely result in an amazing scope of diverse planets that will set planet formation, evolution as well as our planet in an overall context.Comment: 17 pages, 10 figures, Astrobiology, 10, 1, 201

    The distribution of transit durations for Kepler planet candidates and implications for their orbital eccentricities

    Get PDF
    ‘In these times, during the rise in the popularity of institutional repositories, the Society does not forbid authors from depositing their work in such repositories. However, the AAS regards the deposit of scholarly work in such repositories to be a decision of the individual scholar, as long as the individual's actions respect the diligence of the journals and their reviewers.’ Original article can be found at : http://iopscience.iop.org/ Copyright American Astronomical SocietyDoppler planet searches have discovered that giant planets follow orbits with a wide range of orbital eccentricities, revolutionizing theories of planet formation. The discovery of hundreds of exoplanet candidates by NASA's Kepler mission enables astronomers to characterize the eccentricity distribution of small exoplanets. Measuring the eccentricity of individual planets is only practical in favorable cases that are amenable to complementary techniques (e.g., radial velocities, transit timing variations, occultation photometry). Yet even in the absence of individual eccentricities, it is possible to study the distribution of eccentricities based on the distribution of transit durations (relative to the maximum transit duration for a circular orbit). We analyze the transit duration distribution of Kepler planet candidates. We find that for host stars with T > 5100 K we cannot invert this to infer the eccentricity distribution at this time due to uncertainties and possible systematics in the host star densities. With this limitation in mind, we compare the observed transit duration distribution with models to rule out extreme distributions. If we assume a Rayleigh eccentricity distribution for Kepler planet candidates, then we find best fits with a mean eccentricity of 0.1-0.25 for host stars with T ≤ 5100 K. We compare the transit duration distribution for different subsets of Kepler planet candidates and discuss tentative trends with planetary radius and multiplicity. High-precision spectroscopic follow-up observations for a large sample of host stars will be required to confirm which trends are real and which are the results of systematic errors in stellar radii. Finally, we identify planet candidates that must be eccentric or have a significantly underestimated stellar radius.Peer reviewedFinal Accepted Versio

    Noise Sources in Photometry and Radial Velocities

    Full text link
    The quest for Earth-like, extrasolar planets (exoplanets), especially those located inside the habitable zone of their host stars, requires techniques sensitive enough to detect the faint signals produced by those planets. The radial velocity (RV) and photometric transit methods are the most widely used and also the most efficient methods for detecting and characterizing exoplanets. However, presence of astrophysical "noise" makes it difficult to detect and accurately characterize exoplanets. It is important to note that the amplitude of such astrophysical noise is larger than both the signal of Earth-like exoplanets and state-of-the-art instrumentation limit precision, making this a pressing topic that needs to be addressed. In this chapter, I present a general review of the main sources of noise in photometric and RV observations, namely, stellar oscillations, granulation, and magnetic activity. Moreover, for each noise source I discuss the techniques and observational strategies which allow us to mitigate their impact.Comment: 11 pages, 2 tables, Lecture presented at the IVth Azores International Advanced School in Space Sciences on "Asteroseismology and Exoplanets: Listening to the Stars and Searching for New Worlds" (arXiv:1709.00645), which took place in Horta, Azores Islands, Portugal in July 201

    Asteroseismology of red giants & galactic archaeology

    Full text link
    Red-giant stars are low- to intermediate-mass (M10M \lesssim 10~M_{\odot}) stars that have exhausted hydrogen in the core. These extended, cool and hence red stars are key targets for stellar evolution studies as well as galactic studies for several reasons: a) many stars go through a red-giant phase; b) red giants are intrinsically bright; c) large stellar internal structure changes as well as changes in surface chemical abundances take place over relatively short time; d) red-giant stars exhibit global intrinsic oscillations. Due to their large number and intrinsic brightness it is possible to observe many of these stars up to large distances. Furthermore, the global intrinsic oscillations provide a means to discern red-giant stars in the pre-helium core burning from the ones in the helium core burning phase and provide an estimate of stellar ages, a key ingredient for galactic studies. In this lecture I will first discuss some physical phenomena that play a role in red-giant stars and several phases of red-giant evolution. Then, I will provide some details about asteroseismology -- the study of the internal structure of stars through their intrinsic oscillations -- of red-giant stars. I will conclude by discussing galactic archaeology -- the study of the formation and evolution of the Milky Way by reconstructing its past from its current constituents -- and the role red-giant stars can play in that.Comment: Lecture presented at the IVth Azores International Advanced School in Space Sciences on "Asteroseismology and Exoplanets: Listening to the Stars and Searching for New Worlds" (arXiv:1709.00645), which took place in Horta, Azores Islands, Portugal in July 201

    Stellar activity cycles and contribution of the deep layers knowledge

    Full text link
    It is believed that magnetic activity on the Sun and solar-type stars are tightly related to the dynamo process driven by the interaction between rotation, convection, and magnetic field. However, the detailed mechanisms of this process are still incompletely understood. Many questions remain unanswered, e.g.: why some stars are more active than others?; why some stars have a flat activity?; why is there a Maunder minimum?; are all the cycles regular? A large number of prox- ies are typically used to study the magnetic activity of stars as we cannot resolve stellar discs. Recently, it was shown that asteroseismology can also be used to study stellar activity, making it an even more powerful tool. If short cycles are not so un- common, we expect to detect many of them with missions such as CoRoT, Kepler, and possibly the PLATO mission. We will review some of the latest results obtained with spectroscopic measurements. We will show how asteroseismology can help us to better understand the complex process of dynamo and illustrate how the CoRoT and Kepler missions are revolutionizing our knowledge on stellar activity. A new window is being opened over our understanding of the magnetic variability of stars.Comment: 7 pages. To appear in Astrophysics and Space Science Proceedings series of the 20th Stellar pulsation conference held in Granada (Spain) from 6 to 10 September 2011

    Prospects for asteroseismology

    Full text link
    The observational basis for asteroseismology is being dramatically strengthened, through more than two years of data from the CoRoT satellite, the flood of data coming from the Kepler mission and, in the slightly longer term, from dedicated ground-based facilities. Our ability to utilize these data depends on further development of techniques for basic data analysis, as well as on an improved understanding of the relation between the observed frequencies and the underlying properties of the stars. Also, stellar modelling must be further developed, to match the increasing diagnostic potential of the data. Here we discuss some aspects of data interpretation and modelling, focussing on the important case of stars with solar-like oscillations.Comment: Proc. HELAS Workshop on 'Synergies between solar and stellar modelling', eds M. Marconi, D. Cardini & M. P. Di Mauro, Astrophys. Space Sci., in the press Revision: correcting abscissa labels on Figs 1 and

    Kepler-22b: A 2.4 Earth-radius Planet in the Habitable Zone of a Sun-like Star

    Get PDF
    A search of the time-series photometry from NASA's Kepler spacecraft reveals a transiting planet candidate orbiting the 11th magnitude G5 dwarf KIC 10593626 with a period of 290 days. The characteristics of the host star are well constrained by high-resolution spectroscopy combined with an asteroseismic analysis of the Kepler photometry, leading to an estimated mass and radius of 0.970 +/- 0.060 MSun and 0.979 +/- 0.020 RSun. The depth of 492 +/- 10ppm for the three observed transits yields a radius of 2.38 +/- 0.13 REarth for the planet. The system passes a battery of tests for false positives, including reconnaissance spectroscopy, high-resolution imaging, and centroid motion. A full BLENDER analysis provides further validation of the planet interpretation by showing that contamination of the target by an eclipsing system would rarely mimic the observed shape of the transits. The final validation of the planet is provided by 16 radial velocities obtained with HIRES on Keck 1 over a one year span. Although the velocities do not lead to a reliable orbit and mass determination, they are able to constrain the mass to a 3{\sigma} upper limit of 124 MEarth, safely in the regime of planetary masses, thus earning the designation Kepler-22b. The radiative equilibrium temperature is 262K for a planet in Kepler-22b's orbit. Although there is no evidence that Kepler-22b is a rocky planet, it is the first confirmed planet with a measured radius to orbit in the Habitable Zone of any star other than the Sun.Comment: Accepted to Ap

    High-contrast imaging constraints on gas giant planet formation - The Herbig Ae/Be star opportunity

    Full text link
    Planet formation studies are often focused on solar-type stars, implicitly considering our Sun as reference point. This approach overlooks, however, that Herbig Ae/Be stars are in some sense much better targets to study planet formation processes empirically, with their disks generally being larger, brighter and simply easier to observe across a large wavelength range. In addition, massive gas giant planets have been found on wide orbits around early type stars, triggering the question if these objects did indeed form there and, if so, by what process. In the following I briefly review what we currently know about the occurrence rate of planets around intermediate mass stars, before discussing recent results from Herbig Ae/Be stars in the context of planet formation. The main emphasis is put on spatially resolved polarized light images of potentially planet forming disks and how these images - in combination with other data - can be used to empirically constrain (parts of) the planet formation process. Of particular interest are two objects, HD100546 and HD169142, where, in addition to intriguing morphological structures in the disks, direct observational evidence for (very) young planets has been reported. I conclude with an outlook, what further progress we can expect in the very near future with the next generation of high-contrast imagers at 8-m class telescopes and their synergies with ALMA.Comment: Accepted by Astrophysics and Space Science as invited short review in special issue about Herbig Ae/Be stars; 12 pages incl. 5 figures, 2 tables and reference
    corecore