683 research outputs found

    I.5 In the United States: the long way to Kepler

    Get PDF
    This book is dedicated to all the people interested in the CoRoT mission and the beautiful data that were delivered during its six year duration. Either amateurs, professional, young or senior researchers, they will find treasures not only at the time of this publication but also in the future twenty or thirty years. It presents the data in their final version, explains how they have been obtained, how to handle them, describes the tools necessary to understand them, and where to find them. It also highlights the most striking first results obtained up to now. CoRoT has opened several unexpected directions of research and certainly new ones still to be discovered

    Detection of Other Planetary Systems Using Photometry

    Get PDF
    Detection of extrasolar short-period planets, particularly if they are in the liquid-water zone, would be one of the most exciting discoveries of our lifetime. A well-planned space mission has the capability of making this discovery using the photometric method. An Earth-sized planet transiting a Sun-like star will cause a decrease in the apparent luminosity of the star by one part in 10,000 with a duration of about 12 hours and a period of about one year. Given a random orientation of orbital plane alignments with the line-of-sight to a star, and assuming our solar system to be typical, one would expect 1 percent of the stars monitored to exhibit planetary transits. A null result would also be significant and indicate that Earth-sized planets are rare. For the mission to be successful one needs a sensor system that can simultaneously monitor many thousands of stars with a photometric precision of one part in 30,000 per hour of integration. Confirmation of a detection will involve detection of a second transit that will yield a period and predict the time for a third and subsequent transits. The technology issues that need to be addressed are twofold: one is for an appropriate optical design; the other is for a detector system with the necessary photometric precision. Two candidates for the detector system are silicon diodes and CCD's

    Comparison of the Nimbus-4 BUV ozone data with the Ames two-dimensional model

    Get PDF
    A comparison is made of the first two years of Nimbus 4 backscattered ultraviolet (BUV) ozone measurements with the predictions of the Ames two dimensional model. The ozone observations used consist of the mixing ratio on the 1, 2, 5, and 10 mb pressure surfaces. The data are zone and time averaged to obtain seasonal means for 1970 and 1971 and are found to show strong and repeatable meridional and seasonal dependencies. The model used for comparison with the observations extends from 80 N to 80 S latitude and from altitudes of 0 to 60 km with 5 deg horizontal grid spacing and 2.5 km vertical grid spacing. Chemical reaction and photolysis rates are diurnally averaged and the photodissociation rates are corrected for the effects of scattering. The large altitude, latitude, and seasonal changes in the ozone data agree with the model predictions. Model predictions of the sensitivity of the comparisons to changes in the assumed mixing ratios of water vapor, odd nitrogen, and odd chlorine, as well as to changes in the ambient temperature and transport parameters are also shown

    Method of identifying clusters representing statistical dependencies in multivariate data

    Get PDF
    Approach is first to cluster and then to compute spatial boundaries for resulting clusters. Next step is to compute, from set of Monte Carlo samples obtained from scrambled data, estimates of probabilities of obtaining at least as many points within boundaries as were actually observed in original data

    Planetary Transits Toward the Galactic Bulge

    Get PDF
    The primary difficulty with using transits to discover extrasolar planets is the low probability a planet has of transiting its parent star. One way of overcoming this difficulty is to search for transits in dense stellar fields, such as the Galactic bulge. Here I estimate the number of planets that might be detected from a monitoring campaign toward the bulge. A campaign lasting 10 nights on a 10 meter telescope (assuming 8 hours of observations per night and a 5'x5' field of view) would detect about 100 planets with radius \rp=1.5 \rjup, or about 30 planets with \rp=1.0 \rjup, if the frequency and distribution of planets in the bulge is similar to that in the solar neighborhood. Most of these planets will be discovered around stars just below the turn-off, i.e. slightly evolved G-dwarfs. Campaigns involving 1- or 4-m class telescopes are unlikely to discover any planets, unless there exists a substantial population of companions with \rp > 1.5 \rjup.Comment: 4 pages, 4 figures. Submitted to ApJ Letter

    Proceedings of the Workshop on Improvements to Photometry

    Get PDF
    The purposes of the workshop were to determine what astronomical problems would benefit by increased photometric precision, determine the current level of precision, identify the processes limiting the precision, and recommend approaches to improving photometric precision. Twenty representatives of the university, industry, and government communities participated. Results and recommendations are discussed

    Tests of a multichannel photometer based on silicon diode detectors

    Get PDF
    A breadboard photometer was constructed that demonstrates a precision of 2 times 10 to the 4th power in the laboratory and scintillation-limited performance when used with an 0.5 m aperture telescope. Because the detectors and preamps are not cooled, only stars with m sub v approx. less than 4 are bright enough to allow the photometer to attain a precision of 1 times 10 to the 3rd power for three minute observations with an 0.5 m aperature telescope. Cooling the telescope should allow much fainter stars to be observed. Increasing the aperture of the telescope will allow higher precision and the observation of fainter stars

    Outcomes and Duration of Tidal Evolution in a Star-Planet-Moon System

    Full text link
    We formulated tidal decay lifetimes for hypothetical moons orbiting extrasolar planets with both lunar and stellar tides. Previous work neglected the effect of lunar tides on planet rotation, and are therefore applicable only to systems in which the moon's mass is much less than that of the planet. This work, in contrast, can be applied to the relatively large moons that might be detected around newly-discovered Neptune-mass and super-Earth planets. We conclude that moons are more stable when the planet/moon systems are further from the parent star, the planets are heavier, or the parent stars are lighter. Inclusion of lunar tides allows for significantly longer lifetimes for a massive moon relative to prior formulations. We expect that the semi-major axis of the planet hosting the first detected exomoon around a G-type star is 0.4-0.6 AU and is 0.2-0.4 AU for an M-type star.Comment: Accepted for publication in ApJ, 19 pages, 19 figure
    corecore