4 research outputs found

    The chitosan affects severely the carbon metabolism in mango (Mangifera indica L. cv. Palmer) fruit during storage

    No full text
    Mango is a highly perishable fruit with a short post-harvest time due to the intense metabolic activity after harvesting. In attempt to evaluate the effects of chitosan in mango fruits, it was treated with 0%, 1%, 2% or 3% of chitosan solutions, placed into plastic trays, and stored at room temperature. Changes in physical and chemical parameters were evaluated. Chitosan delayed the climacteric peak, water loss and firmness. Further, few changes in soluble solid content, titratable acidity, pH of the pulp as well as in sugar content and decreased starch degradation were observed. Altogether, our results suggest chitosan edible coating effectively prolongs the quality attributes, affecting basic mitochondrial respiration and starch degradation rate

    Chitosan delays ripening and ROS production in guava (Psidium guajava L.) fruit

    No full text
    Guava is a typically tropical fruit highly perishable with a short shelf-life due to intense metabolic activity after harvested. In attempt to minimize the problems related to the postharvest, we evaluated the physiochemical characteristics and antioxidant system in guava fruits under chitosan coating at concentrations of 1%, 2%, and 3% stored at 25 °C during 96 h. The chitosan suppressed the respiratory rate, fresh weight loss, firmness and skin color with delay in the degradation of chlorophyll. In the treatment with 2% and 3% of chitosan in the solid soluble content and ascorbic acid were reduced; retarded the loss of titratable acidity during 96 h after treatment. These treatment induced significant decreases in the phenylalanine ammonia-lyase activity and significantly increases of peroxidase Activity. Our results suggest that chitosan effectively prolongs the quality attributes in guava fruits after harvesting due to increases in the antioxidant processes, delaying the ripening during room temperature of storage

    Mitochondrial dysfunction associated with ascorbate synthesis in plants

    No full text
    International audienceMitochondria are the major organelles of energy production; however, active mitochondria can decline their energetic role and show a dysfunctional status. Mitochondrial dysfunction was induced by high nonphysiological level of L-galactone-1,4-lactone (L-GalL), the precursor of ascorbate (AsA), in plant mitochondria. The dysfunction induced by L-GalL was associated with the fault in the mitochondrial electron partition and reactive oxygen species (ROS) over-production. Using mitochondria from RNAi-plant lines harbouring silenced Lgalactone-1,4-lactone dehydrogenase (L-GalLDH) activity, it was demonstrated that such dysfunction is dependent on this enzyme activity. The capacity of alternative respiration was strongly decreased by L-GalL, probably mediated by redox-inactivation of the alternative oxidase (AOX) enzyme. Although, alternative respiration was shown to be the key factor that helps support AsA synthesis in dysfunctional mitochondria. Experiments with respiratory inhibitors showed that ROS formation and mitochondrial dysfunction were more associated with the decline in the activities of COX (cytochrome oxidase) and particularly AOX than with the lower activities of respiratory complexes I and III. The application of high L-GalL concentrations induced proteomic changes that indicated alterations in proteins related to oxidative stress and energetic status. However, supra-optimal L-GalL concentration was not deleterious for plants. Instead, the L-GalLDH activity could be positive. Indeed, it was found that wild type plants performed better growth than L-GalLDH-RNAi plants in response to high nonphysiological L-GalL concentrations

    Mitochondrial ascorbate synthesis acts as a pro-oxidant pathway and down-regulate energy supply in plants

    No full text
    Attempts to improve the ascorbate (AsA) content of plants are still dealing with the limited understanding of why exists a wide variability of this powerful anti-oxidant molecule in different plant sources, species and environmental situations. In plant mitochondria, the last step of AsA synthesis is catalyzed by the enzyme L-galactone-1,4-lactone dehydrogenase (L-GalLDH). By using GalLDH-RNAi silencing plant lines, biochemical and proteomic approaches, we here discovered that, in addition to accumulate this antioxidant, mitochondria synthesize AsA to down-regulate the respiratory activity and the cellular energy provision. The work reveals that the AsA synthesis pathway within mitochondria is a branched electron transfer process that channels electrons towards the alternative oxidase, interfering with conventional electron transport. It was unexpectedly found that significant hydrogen peroxide is generated during AsA synthesis, which affects the AsA level. The induced AsA synthesis shows proteomic alterations of mitochondrial and extra-mitochondrial proteins related to oxidative and energetic metabolism. The most identified proteins were known components of plant responses to high light acclimation, programmed cell death, oxidative stress, senescence, cell expansion, iron and phosphorus starvation, different abiotic stress/pathogen attack responses and others. We propose that changing the electron flux associated with AsA synthesis might be part of a new mechanism by which the L-GalLDH enzyme would adapt plant mitochondria to fluctuating energy demands and redox status occurring under different physiological contexts.Instituto de FisiologĂ­a Vegeta
    corecore