66 research outputs found
Star cluster disruption by a massive black hole binary
Massive black hole binaries (BHBs) are expected to form as the result of galaxy mergers; they shrink via dynamical friction and stellar scatterings, until gravitational waves (GWs) bring them to the final coalescence. It has been argued that BHBs may stall at a parsec scale and never enter the GW stage if stars are not continuously supplied to the BHB loss cone. Here, we perform several N-body experiments to study the effect of an 8
7 104M 99 stellar cluster (SC) infalling on a parsec-scale BHB. We explore different orbital elements for the SC, and we perform runs both with and without accounting for the influence of a rigid stellar cusp (modelled as a rigid Dehnen potential). We find that the semimajor axis of the BHB shrinks by 73 10 per cent if the SC is on a nearly radial orbit; the shrinking is more efficient when a Dehnen potential is included and the orbital plane of the SC coincides with that of the BHB. In contrast, if the SC orbit has non-zero angular momentum, only few stars enter the BHB loss cone and the resulting BHB shrinking is negligible. Our results indicate that SC disruption might significantly contribute to the shrinking of a parsec-scale BHB only if the SC approaches the BHB on a nearly radial orbit
Star cluster disruption by a supermassive black hole binary
Binary supermassive black holes (BBHs) are expected to be one of the most powerful sources of low-frequency gravitational waves (GWs) for future space-borne detectors. Prior to the GW emission stage, BBHs evolving in gas-poor nuclei shrink primarily through the slingshot ejection of stars approaching the BBH from sufficiently close distances. Here we address the possibility that the BBH shrinking rate is enhanced through the infall of a star cluster (SC) onto the BBH. We present the results of direct summation N-body simulations exploring different orbits for the SC infall, and we show that SCs reaching the BBH on non-zero angular momentum orbits (with eccentricity 0.75) fail to enhance the BBH hardening, while SCs approaching the BBH on radial orbits reduce the BBH separation by 3c 10% in less than 10 Myr, effectively shortening the BBH path towards GWs
Brownian motion of massive black hole binaries and the final parsec problem
Massive black hole binaries (BHBs) are expected to be one of the most powerful sources of gravitational waves in the frequency range of the pulsar timing array and of forthcoming space-borne detectors. They are believed to form in the final stages of galaxy mergers, and then harden by slingshot ejections of passing stars. However, evolution via the slingshot mechanism may be ineffective if the reservoir of interacting stars is not readily replenished, and the binary shrinking may come to a halt at roughly a parsec separation. Recent simulations suggest that the departure from spherical symmetry, naturally produced in merger remnants, leads to efficient loss cone refilling, preventing the binary from stalling. However, current N-body simulations able to accurately follow the evolution of BHBs are limited to very modest particle numbers. Brownian motion may artificially enhance the loss cone refilling rate in low-N simulations, where the binary encounters a larger population of stars due its random motion. Here we study the significance of Brownian motion of BHBs in merger remnants in the context of the final parsec problem. We simulate mergers with various particle numbers (from 8k to 1M) and with several density profiles. Moreover, we compare simulations where the BHB is fixed at the centre of the merger remnant with simulations where the BHB is free to random walk. We find that Brownian motion does not significantly affect the evolution of BHBs in simulations with particle numbers in excess of one million, and that the hardening measured in merger simulations is due to collisionless loss cone refilling
Direct -body code on low-power embedded ARM GPUs
This work arises on the environment of the ExaNeSt project aiming at design
and development of an exascale ready supercomputer with low energy consumption
profile but able to support the most demanding scientific and technical
applications. The ExaNeSt compute unit consists of densely-packed low-power
64-bit ARM processors, embedded within Xilinx FPGA SoCs. SoC boards are
heterogeneous architecture where computing power is supplied both by CPUs and
GPUs, and are emerging as a possible low-power and low-cost alternative to
clusters based on traditional CPUs. A state-of-the-art direct -body code
suitable for astrophysical simulations has been re-engineered in order to
exploit SoC heterogeneous platforms based on ARM CPUs and embedded GPUs.
Performance tests show that embedded GPUs can be effectively used to accelerate
real-life scientific calculations, and that are promising also because of their
energy efficiency, which is a crucial design in future exascale platforms.Comment: 16 pages, 7 figures, 1 table, accepted for publication in the
Computing Conference 2019 proceeding
Practical approaches to analyzing PTA data: Cosmic strings with six pulsars
We search for a stochastic gravitational wave background (SGWB) generated by
a network of cosmic strings using six millisecond pulsars from Data Release 2
(DR2) of the European Pulsar Timing Array (EPTA). We perform a Bayesian
analysis considering two models for the network of cosmic string loops, and
compare it to a simple power-law model which is expected from the population of
supermassive black hole binaries. Our main strong assumption is that the
previously reported common red noise process is a SGWB. We find that the
one-parameter cosmic string model is slightly favored over a power-law model
thanks to its simplicity. If we assume a two-component stochastic signal in the
data (supermassive black hole binary population and the signal from cosmic
strings), we get a upper limit on the string tension of () for the two cosmic string models we consider. In extended
two-parameter string models, we were unable to constrain the number of kinks.
We test two approximate and fast Bayesian data analysis methods against the
most rigorous analysis and find consistent results. These two fast and
efficient methods are applicable to all SGWBs, independent of their source, and
will be crucial for analysis of extended data sets.Comment: 13 pages, 5 figure
Practical approaches to analyzing PTA data: Cosmic strings with six pulsars
We search for a stochastic gravitational wave background (SGWB) generated by a network of cosmic strings using six millisecond pulsars from Data Release 2 (DR2) of the European Pulsar Timing Array (EPTA). We perform a Bayesian analysis considering two models for the network of cosmic string loops, and compare it to a simple power-law model which is expected from the population of supermassive black hole binaries. Our main strong assumption is that the previously reported common red noise process is a SGWB. We find that the one-parameter cosmic string model is slightly favored over a power-law model thanks to its simplicity. If we assume a two-component stochastic signal in the data (supermassive black hole binary population and the signal from cosmic strings), we get a 95% upper limit on the string tension of log10(Gμ)<-9.9 (-10.5) for the two cosmic string models we consider. In extended two-parameter string models, we were unable to constrain the number of kinks. We test two approximate and fast Bayesian data analysis methods against the most rigorous analysis and find consistent results. These two fast and efficient methods are applicable to all SGWBs, independent of their source, and will be crucial for analysis of extended datasets
The second data release from the European Pulsar Timing Array I. The dataset and timing analysis
Pulsar timing arrays offer a probe of the low-frequency gravitational wave
spectrum (1 - 100 nanohertz), which is intimately connected to a number of
markers that can uniquely trace the formation and evolution of the Universe. We
present the dataset and the results of the timing analysis from the second data
release of the European Pulsar Timing Array (EPTA). The dataset contains
high-precision pulsar timing data from 25 millisecond pulsars collected with
the five largest radio telescopes in Europe, as well as the Large European
Array for Pulsars. The dataset forms the foundation for the search for
gravitational waves by the EPTA, presented in associated papers. We describe
the dataset and present the results of the frequentist and Bayesian pulsar
timing analysis for individual millisecond pulsars that have been observed over
the last ~25 years. We discuss the improvements to the individual pulsar
parameter estimates, as well as new measurements of the physical properties of
these pulsars and their companions. This data release extends the dataset from
EPTA Data Release 1 up to the beginning of 2021, with individual pulsar
datasets with timespans ranging from 14 to 25 years. These lead to improved
constraints on annual parallaxes, secular variation of the orbital period, and
Shapiro delay for a number of sources. Based on these results, we derived
astrophysical parameters that include distances, transverse velocities, binary
pulsar masses, and annual orbital parallaxes.Comment: 29 pages, 9 figures, 13 tables, Astronomy & Astrophysics in pres
The second data release from the European Pulsar Timing Array IV. Search for continuous gravitational wave signals
We present the results of a search for continuous gravitational wave signals
(CGWs) in the second data release (DR2) of the European Pulsar Timing Array
(EPTA) collaboration. The most significant candidate event from this search has
a gravitational wave frequency of 4-5 nHz. Such a signal could be generated by
a supermassive black hole binary (SMBHB) in the local Universe. We present the
results of a follow-up analysis of this candidate using both Bayesian and
frequentist methods. The Bayesian analysis gives a Bayes factor of 4 in favor
of the presence of the CGW over a common uncorrelated noise process, while the
frequentist analysis estimates the p-value of the candidate to be 1%, also
assuming the presence of common uncorrelated red noise. However, comparing a
model that includes both a CGW and a gravitational wave background (GWB) to a
GWB only, the Bayes factor in favour of the CGW model is only 0.7. Therefore,
we cannot conclusively determine the origin of the observed feature, but we
cannot rule it out as a CGW source. We present results of simulations that
demonstrate that data containing a weak gravitational wave background can be
misinterpreted as data including a CGW and vice versa, providing two plausible
explanations of the EPTA DR2 data. Further investigations combining data from
all PTA collaborations will be needed to reveal the true origin of this
feature.Comment: 12 figures, 15 pages, to be submitte
The second data release from the European Pulsar Timing Array: II. Customised pulsar noise models for spatially correlated gravitational waves
Aims. The nanohertz gravitational wave background (GWB) is expected to be an aggregate signal of an ensemble of gravitational waves emitted predominantly by a large population of coalescing supermassive black hole binaries in the centres of merging galaxies. Pulsar timing arrays (PTAs), which are ensembles of extremely stable pulsars at approximately kiloparsec distances precisely monitored for decades, are the most precise experiments capable of detecting this background. However, the subtle imprints that the GWB induces on pulsar timing data are obscured by many sources of noise that occur on various timescales. These must be carefully modelled and mitigated to increase the sensitivity to the background signal.Methods. In this paper, we present a novel technique to estimate the optimal number of frequency coefficients for modelling achromatic and chromatic noise, while selecting the preferred set of noise models to use for each pulsar. We also incorporated a new model to fit for scattering variations in the Bayesian pulsar timing package temponest. These customised noise models enable a more robust characterisation of single-pulsar noise. We developed a software package based on tempo2 to create realistic simulations of European Pulsar Timing Array (EPTA) datasets that allowed us to test the efficacy of our noise modelling algorithms.Results. Using these techniques, we present an in-depth analysis of the noise properties of 25 millisecond pulsars (MSPs) that form the second data release (DR2) of the EPTA and investigate the effect of incorporating low-frequency data from the Indian Pulsar Timing Array collaboration for a common sample of ten MSPs. We used two packages, enterprise and temponest, to estimate our noise models and compare them with those reported using EPTA DR1. We find that, while in some pulsars we can successfully disentangle chromatic from achromatic noise owing to the wider frequency coverage in DR2, in others the noise models evolve in a much more complicated way. We also find evidence of long-term scattering variations in PSR J1600-3053. Through our simulations, we identify intrinsic biases in our current noise analysis techniques and discuss their effect on GWB searches. The analysis and results discussed in this article directly help to improve the sensitivity to the GWB signal and they are already being used as part of global PTA efforts
The second data release from the European Pulsar Timing Array III. Search for gravitational wave signals
We present the results of the search for an isotropic stochastic gravitational wave background (GWB) at nanohertz frequencies using the second data release of the European Pulsar Timing Array (EPTA) for 25 millisecond pulsars and a combination with the first data release of the Indian Pulsar Timing Array (InPTA). A robust GWB detection is conditioned upon resolving the Hellings-Downs angular pattern in the pairwise cross-correlation of the pulsar timing residuals. Additionally, the GWB is expected to yield the same (common) spectrum of temporal correlations across pulsars, which is used as a null hypothesis in the GWB search. Such a common-spectrum process has already been observed in pulsar timing data. We analysed (i) the full 24.7-year EPTA data set, (ii) its 10.3-year subset based on modern observing systems, (iii) the combination of the full data set with the first data release of the InPTA for ten commonly timed millisecond pulsars, and (iv) the combination of the 10.3-year subset with the InPTA data. These combinations allowed us to probe the contributions of instrumental noise and interstellar propagation effects. With the full data set, we find marginal evidence for a GWB, with a Bayes factor of four and a false alarm probability of 4%. With the 10.3-year subset, we report evidence for a GWB, with a Bayes factor of 60 and a false alarm probability of about 0.1% (≳3σ significance). The addition of the InPTA data yields results that are broadly consistent with the EPTA-only data sets, with the benefit of better noise modelling. Analyses were performed with different data processing pipelines to test the consistency of the results from independent software packages. The latest EPTA data from new generation observing systems show non-negligible evidence for the GWB. At the same time, the inferred spectrum is rather uncertain and in mild tension with the common signal measured in the full data set. However, if the spectral index is fixed at 13/3, the two data sets give a similar amplitude of (2.5 ± 0.7) × 10−15 at a reference frequency of 1 yr−1. Further investigation of these issues is required for reliable astrophysical interpretations of this signal. By continuing our detection efforts as part of the International Pulsar Timing Array (IPTA), we expect to be able to improve the measurement of spatial correlations and better characterise this signal in the coming years
- …