22 research outputs found

    Comments on the High Pressure Preservation of Human Milk

    Get PDF
    The current state of studies on the high pressure preservation of the human milk is briefly presented. It is indicated that reaching (i) the antimicrobial safety, (ii) antiviral safety, and (iii) high nutritional, metabolic and immunological quality, may be difficult for a “classical” single pressure pulse High Pressure Preservation (HPP) treatment. It is shown that the sudden decompression leads to additional physical processes, which can be important for supporting the HPP technology. Additional advantages were reached due to the two-pulse compression, with subsequent values: P = 200 MPa and 400 MPa. Tests included the microbiological insight for the two-weeks storage. It is also shown that the decay of the number of microorganisms under the high pressure follows the relation n(t) = n0exp(At)exp(Bt2). Finally, issues regarding containers for the high pressure preservation of human milk are discussed

    Infections and risk-adjusted length of stay and hospital mortality in Polish Neonatology Intensive Care Units

    Get PDF
    Background: The objectives of this study were to analyze the impact of infections on prolonging hospital stay with consideration of underlying risk factors and determining the mortality rates and its association with infections. Methods: An electronic database developed from a continuous prospective targeted infection surveillance program was used in the study. Data were collected from 2009 to 2012 in five Polish tertiary academic neonatal intensive care units (NICUs). The length of stay (LOS) of 2,003 very low birth weight (VLBW) neonates was calculated as the sum of the number of days since birth until death or until reaching a weight of 1,800 g. Results: The median LOS for neonates with infections was twice as high as for neonates without infection. LOS was significantly affected by the overall general condition of the neonate, as expressed by both gestational age and birth weight as well as by the Clinical Risk Index for Babies (CRIB) score; another independent factor was presence of at least one infection. Risk of in-hospital mortality was significantly increased by male sex and vaginal birth and was lower among breastfed neonates. Deaths were significantly more frequent in neonates without infection. Conclusions: The general condition of VLBW infants statistically increase both their risk of mortality and LOS; this is in contrast to the presence of infection, which significantly prolonged LOS only

    Gut microbiota analysis reveals a marked shift to bifidobacteria by a starter infant formula containing a synbiotic of bovine milk-derived oligosaccharides and Bifidobacterium animalis subsp. lactis CNCM I-3446.

    Get PDF
    Non-digestible milk oligosaccharides were proposed as receptor decoys for pathogens and as nutrients for beneficial gut commensals like bifidobacteria. Bovine milk contains oligosaccharides, some of which are structurally identical or similar to those found in human milk. In a controlled, randomized double-blinded clinical trial we tested the effect of feeding a formula supplemented with a mixture of bovine milk-derived oligosaccharides (BMOS) generated from whey permeate, containing galacto-oligosaccharides and 3'- and 6'-sialyllactose, and the probiotic Bifidobacterium animalis subsp. lactis (B. lactis) strain CNCM I-3446. Breastfed infants served as reference group. Compared with a non-supplemented control formula, the test formula showed a similar tolerability and supported a similar growth in healthy newborns followed for 12 weeks. The control, but not the test group, differed from the breast-fed reference group by a higher faecal pH and a significantly higher diversity of the faecal microbiota. In the test group the probiotic B. lactis increased by 100-fold in the stool and was detected in all supplemented infants. BMOS stimulated a marked shift to a bifidobacterium-dominated faecal microbiota via increases in endogenous bifidobacteria (B. longum, B. breve, B. bifidum, B. pseudocatenulatum)

    Antibiotic consumption in laboratory confirmed vs. non-confirmed bloodstream infections among very low birth weight neonates in Poland

    Get PDF
    Abstract Background Newborns are a population in which antibiotic consumption is extremely high. Targeted antibiotic therapy should help to reduce antibiotics consumption. The aim of this study was an assessment of antibiotic usage in bloodstream infections treatment in the Polish Neonatology Surveillance Network (PNSN) and determining the possibility of applying this kind of data in infection control, especially for the evaluation of standard methods of microbiological diagnostics. Methods Data were collected between 01.01.2009 and 31.12.2013 in five teaching NICUs from the PNSN. The duration of treatment in days (DOT) and the defined daily doses (DDD) were used for the assessment of antibiotics consumption. Results The median DOT for a single case of BSI amounted to 8.0 days; whereas the median consumption expressed in DDD was 0.130. In the case of laboratory confirmed BSI, median DOT was 8 days, and consumption—0.120 DDD. Median length of therapy was shorter for unconfirmed cases: 7 days, while the consumption of antibiotics was higher—0.140 DDD (p < 0.0001). High consumption of glycopeptides expressed in DOTs was observed in studied population, taking into account etiology of infection. Conclusions Even application of classical methods of microbiological diagnostics significantly reduces the consumption of antibiotics expressed by DDD. However, the high consumption of glycopeptides indicates the necessity of applying rapid diagnostic assays. Nevertheless, the assessment of antibiotic consumption in neonatal units represents a methodological challenge and requires the use of different measurement tools
    corecore