98 research outputs found

    Two coupled Josephson junctions: dc voltage controlled by biharmonic current

    Full text link
    We study transport properties of two Josephson junctions coupled by an external shunt resistance. One of the junction (say, the first) is driven by an unbiased ac current consisting of two harmonics. The device can rectify the ac current yielding a dc voltage across the first junction. For some values of coupling strength, controlled by an external shunt resistance, a dc voltage across the second junction can be generated. By variation of system parameters like the relative phase or frequency of two harmonics, one can conveniently manipulate both voltages with high efficiency, e.g., changing the dc voltages across the first and second junctions from positive to negative values and vice versa.Comment: 15 pages, 7 figures, to appear in J. Phys. Condens. Matter (2012

    Deterministic ratchets: route to diffusive transport

    Full text link
    The rectification efficiency of an underdamped ratchet operated in the adiabatic regime increases according to a scaling current-amplitude curve as the damping constant approaches a critical threshold; below threshold the rectified signal becomes extremely irregular and eventually its time average drops to zero. Periodic (locked) and diffusive (fully chaotic) trajectories coexist on fine tuning the amplitude of the input signal. The transition from regular to chaotic transport in noiseless ratchets is studied numerically.Comment: 9 pages, 5 figures, to be published in Phys. Rev.

    Arthrobacter sp. Inoculation Improves Cactus Pear Growth, Quality of Fruits, and Nutraceutical Properties of Cladodes

    Get PDF
    A study was undertaken to determine the effects of a strain of Arthrobacter sp., a Plant Growth-Promoting Bacteria (PGPB), on plant phenology and qualitative composition of Opuntia ficus-indica (L.) Mill. fruits and cladodes. The strain was inoculated in soil, and its effects on cactus pear plants were detected and compared to nontreated plants. Compared to the latter, the treatment with bacteria promoted an earlier plant sprouting (2 months before the control) and fruitification, ameliorating fruit quality (i.e., improved fresh and dry weight: + 24% and + 26%, respectively, increased total solid content by 30% and polyphenols concentrations by 22%). The quality and quantity of monosaccharides of cladodes were also increased by Arthrobacter sp. with a positive effect on their nutraceutical value. In summer, the mean values of xylose, arabinose, and mannose were significantly higher in treated compared to not treated plants (+ 3.54; + 7.04; + 4.76 mg/kg d.w. respectively). A similar trend was observed in autumn, when the cladodes of inoculated plants had higher contents, i.e., 33% xylose, 65% arabinose, and 40% mannose, respect to the controls. In conclusion, Arthrobacter sp. plays a role in the improvement of nutritional and nutraceutical properties of cactus pear plants due to its capabilities to promote plant growth. Therefore, these results open new perspectives in PGPB application in the agro-farming system as alternative strategy to improve cactus pear growth, yield, and cladodes quality, being the latter the main by-product to be utilized for additional industrial uses

    Stokes' Drift of linear Defects

    Full text link
    A linear defect, viz. an elastic string, diffusing on a planar substrate traversed by a travelling wave experiences a drag known as Stokes' drift. In the limit of an infinitely long string, such a mechanism is shown to be characterized by a sharp threshold that depends on the wave parameters, the string damping constant and the substrate temperature. Moreover, the onset of the Stokes' drift is signaled by an excess diffusion of the string center of mass, while the dispersion of the drifting string around its center of mass may grow anomalous.Comment: 14 pages, no figures, to be published in Phys.Rev.

    Polyamine oxidase is involved in spermidine reduction of transglutaminase type 2-catalyzed βh-crystallins polymerization in calcium-induced experimental cataract

    Get PDF
    In an in vitro Ca2+-induced cataract model, the progression of opacification is paralleled by a rapid decrease of the endogenous levels of spermidine (SPD) and an increase of transglutaminase type 2 (TG2, EC 2.3.2.13)-catalyzed lens crystallins cross-linking by protein-boundN(1)-N-8-bis(gamma-glutamyl) SPD. This pattern was reversed adding exogenous SPD to the incubation resulting in a delayed loss of transparency of the rabbit lens. The present report shows evidence on the main incorporation of SPD by the catalytic activity of TG2, toward beta H-crystallins and in particular to the beta B2- and mostly in beta B3-crystallins. The increase of endogenous SPD in the cultured rabbit lens showed the activation of a flavin adenine dinucleotide (FAD)-dependent polyamine oxidases (PAO EC 1.5.3.11). As it is known that FAD-PAO degrades theN(8)-terminal reactive portion ofN(1)-mono(gamma-glutamyl) SPD, the protein-boundN(8)-mono(gamma-glutamyl) SPD was found the mainly available derivative for the potential formation of beta B3-crystallins cross-links by protein-boundN(1)-N-8-bis(gamma-glutamyl)SPD. In conclusion, FAD-PAO degradation of theN(8)-terminal reactive residue of the crystallins boundN(1)-mono(gamma-glutamyl)SPD together with the increased concentration of exogenous SPD, leading to saturation of glutamine residues on the substrate proteins, drastically reducesN(1)-N-8-bis(gamma-glutamyl)SPD crosslinks formation, preventing crystallins polymerization and avoiding rabbit lens opacification. The ability of SPD and MDL 72527 to modulate the activities of TG2 and FAD-PAO involved in the mechanism of lens opacification suggests a potential strategy for the prevention of senile cataract

    Enhancement of Brassica napus Tolerance to High Saline Conditions by Seed Priming.

    Get PDF
    Plants grown in saline soils undergo osmotic and oxidative stresses, affecting growth and photosynthesis and, consequently, the yield. Therefore, the increase in soil salinity is a major threat to crop productivity worldwide. Plant’s tolerance can be ameliorated by applying simple methods that induce them to adopt morphological and physiological adjustments to counteract stress. In this work, we evaluated the effects of seed priming on salt stress response in three cultivars of rapeseed (Brassica napus L.) that had different tolerance levels. Seed chemical priming was performed with 2.5 mM spermine (SPM), 5 mM spermidine (SPD), 40 mM NaCl and 2.5 mM Ca (NO3 )2 . Primed and not primed seeds were sown on saline and not saline (controls) media, and morphological and physiological parameters were determined. Since SPD treatment was effective in reducing salinity negative effects on growth, membrane integrity and photosynthetic pigments, we selected this priming to further investigate plant salt stress response. The positive effects of this seed treatment on growth and physiological responses were evident when primed plants were compared to not primed ones, grown under the same saline conditions. SPD priming ameliorated the tolerance towards saline stress, in a genotype-independent manner, by increasing photosynthetic pigments, proline amounts and antioxidant responses in all cultivars exposed to salt. These results may open new perspectives for crop productivity in the struggle against soil salinization

    PGPB Improve Photosynthetic Activity and Tolerance to Oxidative Stress in Brassica napus Grown on Salinized Soils.

    Get PDF
    Soil salinization, one of the most common causes of soil degradation, negatively affects plant growth, reproduction, and yield in plants. Saline conditions elicit some physiological changes to cope with the imposed osmotic and oxidative stresses. Inoculation of plants with some bacterial species that stimulate their growth, i.e., plant growth-promoting bacteria (PGPB), may help plants to counteract saline stress, thus improving the plant’s fitness. This manuscript reports the effects of the inoculation of a salt-sensitive cultivar of Brassica napus (canola) with five different PGPB species (separately), i.e., Azospirillum brasilense, Arthrobacter globiformis, Burkholderia ambifaria, Herbaspirillum seropedicae, and Pseudomonas sp. on plant salt stress physiological responses. The seeds were sown in saline soil (8 dS/m) and inoculated with bacterial suspensions. Seedlings were grown to the phenological stage of rosetta, when morphological and physiological features were determined. In the presence of the above-mentioned PGPB, salt exposed canola plants grew better than noninoculated controls. The water loss was reduced in inoculated plants under saline conditions, due to a low level of membrane damage and the enhanced synthesis of the osmolyte proline, the latter depending on the bacterial strain inoculated. The reduction in membrane damage was also due to the increased antioxidant activity (i.e., higher amount of phenolic compounds, enhanced superoxide dismutase, and ascorbate peroxidase activities) in salt-stressed and inoculated Brassica napus. Furthermore, the salt-stressed and inoculated plants did not show detrimental effects to their photosynthetic apparatus, i.e., higher efficiency of PSII and low energy dissipation by heat for photosynthesis were detected. The improvement of the response to salt stress provided by PGPB paves the way to further use of PGPB as inoculants of plants grown in saline soils

    Flavonoids: a myth or a reality for cancer therapy?

    Get PDF
    Nutraceuticals are biologically active molecules present in foods; they can have beneficial effects on health, but they are not available in large enough quantities to perform this function. Plant metabolites, such as polyphenols, are widely diffused in the plant kingdom, where they play fundamental roles in plant development and interactions with the environment. Among these, flavonoids are of particular interest as they have significant effects on human health. In vitro and/or in vivo studies described flavonoids as essential nutrients for preventing several diseases. They display broad and promising bioactivities to fight cancer, inflammation, bacterial infections, as well as to reduce the severity of neurodegenerative and cardiovascular diseases or diabetes. Therefore, it is not surprising that interest in flavonoids has sharply increased in recent years. More than 23,000 scientific publications on flavonoids have described the potential anticancer activity of these natural molecules in the last decade. Studies, in vitro and in vivo, show that flavonoids exhibit anticancer properties, and many epidemiological studies confirm that dietary intake of flavonoids leads to a reduced risk of cancer. This review provides a glimpse of the mechanisms of action of flavonoids on cancer cells

    Momentum Distribution in Nuclear Matter and Finite Nuclei

    Get PDF
    A simple method is presented to evaluate the effects of short-range correlations on the momentum distribution of nucleons in nuclear matter within the framework of the Green's function approach. The method provides a very efficient representation of the single-particle Green's function for a correlated system. The reliability of this method is established by comparing its results to those obtained in more elaborate calculations. The sensitivity of the momentum distribution on the nucleon-nucleon interaction and the nuclear density is studied. The momentum distributions of nucleons in finite nuclei are derived from those in nuclear matter using a local-density approximation. These results are compared to those obtained directly for light nuclei like 16O^{16}O.Comment: 17 pages REVTeX, 10 figures ps files adde

    Momentum and Energy Distributions of Nucleons in Finite Nuclei due to Short-Range Correlations

    Full text link
    The influence of short-range correlations on the momentum and energy distribution of nucleons in nuclei is evaluated assuming a realistic meson-exchange potential for the nucleon-nucleon interaction. Using the Green-function approach the calculations are performed directly for the finite nucleus 16^{16}O avoiding the local density approximation and its reference to studies of infinite nuclear matter. The nucleon-nucleon correlations induced by the short-range and tensor components of the interaction yield an enhancement of the momentum distribution at high momenta as compared to the Hartree-Fock description. These high-momentum components should be observed mainly in nucleon knockout reactions like (e,ep)(e,e'p) leaving the final nucleus in a state of high excitation energy. Our analysis also demonstrates that non-negligible contributions to the momentum distribution should be found in partial waves which are unoccupied in the simple shell-model. The treatment of correlations beyond the Brueckner-Hartree-Fock approximation also yields an improvement for the calculated ground-state properties.Comment: 12 pages RevTeX, 7 figures postscript files appende
    corecore