124 research outputs found

    Learjet Model 55 Wing Analysis with Landing Loads

    Get PDF
    The NASTRAN analysis was used to determine the impact of new landing loads on the Learjet Model 55 wing. These new landing loads were the result of a performance improvement effort to increase the landing weight of the aircraft to 18,000 lbs. from 17,000 lbs. and extend the life of the tires and brakes by incorporating larger tires and heavy duty brakes. Landing loads for the original 17,000 lb. airplane landing configuration were applied to the full airplane NASTRAN model. The analytical results were correlated with the strain gage data from the original landing load static tests. The landing loads for the 18,000 lb. airplane were applied to the full airplane NASTRAN model, and a comparison was made with the original Model 55 data. The results of this comparison enable Learjet to determine the difference in stress distribution in the wing due to these two different sets of landing loads

    Computer Aided Modeling and Post Processing with NASTRAN Analysis

    Get PDF
    Computer aided engineering systems are invaluable tools in performing NASTRAN finite element analysis. These techniques are implemented in both the pre-processing and post-processing phases of the NASTRAN analysis. The finite element model development, or pre-processing phase, was automated with a computer aided modeling program called Supertabl, and the review and interpretation of the results of the NASTRAN analysis, or post-processing phase, was automated with a computer aided plotting program called Output Display. An intermediate program, Nasplot, which was developed in-house, has also helped to cut down on the model checkout time and reduce errors in the model. An interface has been established between the finite element computer aided engineering system and the Learjet computer aided design system whereby data can be transferred back and forth between the two. These systems have significantly improved productivity and the ability to perform NASTRAN analysis in response to product development requests

    Development of the Learjet 28/29 Wing Using NASTRAN Analysis

    Get PDF
    The structural development work performed on the Learjet 28/29 wing using NASTRAN analysis is discussed. The work included the basic sizing of primary structural members such as wing skins, wing skin splices, and spar caps, as well as the calculation of preliminary weight estimates utilizing the weight computation routine in NASTRAN. The eight spar redundancy of the Learjet wing made this task somewhat more complex than for more determinate type wing structures. Some of the problems that were encountered and the solutions and methods that were used are described

    Determination of Elevator and Rudder Hinge Forces on the Learjet Model 55 Aircraft

    Get PDF
    The empennage structure on the Learjet 55 aircraft was quite similar to the empennage structure on earlier Learjet models. However, due to an important structural change in the vertical fin along with the new loads environment on the 50 series aircraft, a structural test was required on the vertical fin, but the horizontal tail was substantiated by a comparative analysis with previous tests. NASTRAN analysis was used to investigate empennage deflections, stress levels, and control surface hinge forces. The hinge force calculations were made with the control surfaces in the deflected as well as undeflected configurations. A skin panel buckling analysis was also performed, and the non-linear effects of buckling were simulated in the NASTRAN model to more accurately define internal loads and stress levels. Comparisons were then made between the Model 55 and the Model 35/36 stresses and internal forces to determine which components were qualified by previous tests. Some of the methods and techniques used in this analysis are described

    Analysis of the Learjet 35/36 Wing and Correlation with Experimental Results

    Get PDF
    Two NASTRAN models of the Gates Learjet Corporation Model 35/36 Wing were developed. The models and the problems encountered in their development are discussed. A skin buckling analysis used for the ultimate loading conditions is presented. A discussion of the static tests and the correlation of the static test with the NASTRAN results and the results of a supplementary semimonocoque beam analysis are also included

    Oxidation of Alpha-Ketoglutarate Is Required for Reductive Carboxylation in Cancer Cells with Mitochondrial Defects

    Get PDF
    SummaryMammalian cells generate citrate by decarboxylating pyruvate in the mitochondria to supply the tricarboxylic acid (TCA) cycle. In contrast, hypoxia and other impairments of mitochondrial function induce an alternative pathway that produces citrate by reductively carboxylating α-ketoglutarate (AKG) via NADPH-dependent isocitrate dehydrogenase (IDH). It is unknown how cells generate reducing equivalents necessary to supply reductive carboxylation in the setting of mitochondrial impairment. Here, we identified shared metabolic features in cells using reductive carboxylation. Paradoxically, reductive carboxylation was accompanied by concomitant AKG oxidation in the TCA cycle. Inhibiting AKG oxidation decreased reducing equivalent availability and suppressed reductive carboxylation. Interrupting transfer of reducing equivalents from NADH to NADPH by nicotinamide nucleotide transhydrogenase increased NADH abundance and decreased NADPH abundance while suppressing reductive carboxylation. The data demonstrate that reductive carboxylation requires bidirectional AKG metabolism along oxidative and reductive pathways, with the oxidative pathway producing reducing equivalents used to operate IDH in reverse

    Control of intestinal stem cell function and proliferation by mitochondrial pyruvate metabolism.

    Get PDF
    Most differentiated cells convert glucose to pyruvate in the cytosol through glycolysis, followed by pyruvate oxidation in the mitochondria. These processes are linked by the mitochondrial pyruvate carrier (MPC), which is required for efficient mitochondrial pyruvate uptake. In contrast, proliferative cells, including many cancer and stem cells, perform glycolysis robustly but limit fractional mitochondrial pyruvate oxidation. We sought to understand the role this transition from glycolysis to pyruvate oxidation plays in stem cell maintenance and differentiation. Loss of the MPC in Lgr5-EGFP-positive stem cells, or treatment of intestinal organoids with an MPC inhibitor, increases proliferation and expands the stem cell compartment. Similarly, genetic deletion of the MPC in Drosophila intestinal stem cells also increases proliferation, whereas MPC overexpression suppresses stem cell proliferation. These data demonstrate that limiting mitochondrial pyruvate metabolism is necessary and sufficient to maintain the proliferation of intestinal stem cells

    A Ship ‘for which Great Neptune Raves’: The Sovereign of the Seas, la Couronne and Seventeenth-Century International Competition over Warship Design

    Get PDF
    Charles I’s great warship the Sovereign of the Seas is famed for its design, decoration and importance as a tool that heightened the image of English naval supremacy. By exploring its career, size, name and decoration, this article highlights the Sovereign of the Seas’ significance as a national symbol of political and cultural power. It argues that Charles’s leading warship was developed as a reaction to naval advances and current affairs in Europe. Through a diverse range of evidence including diplomatic correspondence, printed texts and artwork from both English and French institutions, as well as relating this to similar advances in the Netherlands and Sweden, the Sovereign of the Seas’ development is internationally contextualized. By comparing it with other contemporary warships, most importantly la Couronne of France, it is shown that Charles’s flagship was a product of a growing international theatre of maritime activity that was inspired by cultural and political competition, as much as it was by military escalation
    • 

    corecore