1,064 research outputs found
Production mechanisms and single-spin asymmetry for kaons in high energy hadron-hadron collisions
Direct consequences on kaon production of the picture proposed in a recent
Letter and subsequent publications are discussed. Further evidence supporting
the proposed picture is obtained. Comparison with the data for the inclusive
cross sections in unpolarized reactions is made. Quantitative results for the
left-right asymmetry in single-spin processes are presented.Comment: 10 pages, 2 Postscript figure
Precise Determination of Electroweak Parameters in Neutrino-Nucleon Scattering
A systematic error in the extraction of from nuclear deep
inelastic scattering of neutrinos and antineutrinos arises from higher-twist
effects arising from nuclear shadowing. We explain that these effects cause a
correction to the results of the recently reported significant deviation from
the Standard Model that is potentially as large as the deviation claimed, and
of a sign that cannot be determined without an extremely careful study of the
data set used to model the input parton distribution functions.Comment: 3pages, 0 figures, version to be published by IJMP
Upper and Lower Bounds for Weak Backdoor Set Detection
We obtain upper and lower bounds for running times of exponential time
algorithms for the detection of weak backdoor sets of 3CNF formulas,
considering various base classes. These results include (omitting polynomial
factors), (i) a 4.54^k algorithm to detect whether there is a weak backdoor set
of at most k variables into the class of Horn formulas; (ii) a 2.27^k algorithm
to detect whether there is a weak backdoor set of at most k variables into the
class of Krom formulas. These bounds improve an earlier known bound of 6^k. We
also prove a 2^k lower bound for these problems, subject to the Strong
Exponential Time Hypothesis.Comment: A short version will appear in the proceedings of the 16th
International Conference on Theory and Applications of Satisfiability Testin
First record of terrestrial Enchytraeidae (Annelida: Clitellata) in Versailles palace's park, France
France can be qualified as terra incognita regarding terrestrial enchytraeids because very little data has been recorded so far in this country. In spring and autumn 2016, enchytraeid communities were investigated in a loamy soil in a meadow located in the park of Versailles palace, France. In total, twenty four enchytraeid species were identified, belonging to six different genera i.e. eleven Fridericia species, four Enchytraeus species, four Achaeta species, two Buchholzia species, two Marionina species and one Enchytronia species. According to the published data, this was one of the highest diversity found in a meadow in Europe
Systems of Linear Equations over and Problems Parameterized Above Average
In the problem Max Lin, we are given a system of linear equations
with variables over in which each equation is assigned a
positive weight and we wish to find an assignment of values to the variables
that maximizes the excess, which is the total weight of satisfied equations
minus the total weight of falsified equations. Using an algebraic approach, we
obtain a lower bound for the maximum excess.
Max Lin Above Average (Max Lin AA) is a parameterized version of Max Lin
introduced by Mahajan et al. (Proc. IWPEC'06 and J. Comput. Syst. Sci. 75,
2009). In Max Lin AA all weights are integral and we are to decide whether the
maximum excess is at least , where is the parameter.
It is not hard to see that we may assume that no two equations in have
the same left-hand side and . Using our maximum excess results,
we prove that, under these assumptions, Max Lin AA is fixed-parameter tractable
for a wide special case: for an arbitrary fixed function
.
Max -Lin AA is a special case of Max Lin AA, where each equation has at
most variables. In Max Exact -SAT AA we are given a multiset of
clauses on variables such that each clause has variables and asked
whether there is a truth assignment to the variables that satisfies at
least clauses. Using our maximum excess results, we
prove that for each fixed , Max -Lin AA and Max Exact -SAT AA can
be solved in time This improves
-time algorithms for the two problems obtained by Gutin et
al. (IWPEC 2009) and Alon et al. (SODA 2010), respectively
Baryon Magnetic Moments and Proton Spin: A Model with Collective Quark Rotation
We analyse the baryon magnetic moments in a model that relates them to the
parton spins , , , and includes a contribution
from orbital angular momentum. The specific assumption is the existence of a
3-quark correlation (such as a flux string) that rotates with angular momentum
around the proton spin axis. A fit to the baryon magnetic
moments, constrained by the measured values of the axial vector coupling
constants , , yields , , where the error is a theoretical
estimate. A second fit, under slightly different assumptions, gives , with no constraint on . The
model provides a consistent description of axial vector couplings, magnetic
moments and the quark polarization measured in deep
inelastic scattering. The fits suggest that a significant part of the angular
momentum of the proton may reside in a collective rotation of the constituent
quarks.Comment: 16 pages, 3 ps-figures, uses RevTeX. Abstract, Sec. II, III and IV
have been expande
Charge symmetry violation in the parton distributions of the nucleon
We point out that charge symmetry violation in both the valence and sea quark
distributions of the nucleon has a non-perturbative source. We calculate this
non-perturbative charge symmetry violation using the meson cloud model, which
has earlier been successfully applied to both the study of SU(2) flavour
asymmetry in the nucleon sea and quark-antiquark asymmetry in the nucleon. We
find that the charge symmetry violation in the valence quark distribution is
well below 1%, which is consistent with most low energy tests but significantly
smaller than the quark model prediction about 5%-10%. Our prediction for the
charge symmetry violation in the sea quark distribution is also much smaller
than the quark model calculation.Comment: RevTex, 26 pages, 6 PostScript figure
Metabolic sensitivity of pancreatic tumour cell apoptosis to glycogen phosphorylase inhibitor treatment
Inhibitors of glycogen breakdown regulate glucose homeostasis by limiting glucose production in diabetes. Here we demonstrate that restrained glycogen breakdown also inhibits cancer cell proliferation and induces apoptosis through limiting glucose oxidation, as well as nucleic acid and de novo fatty acid synthesis. Increasing doses (50-100 microM) of the glycogen phosphorylase inhibitor CP-320626 inhibited [1,2-(13)C(2)]glucose stable isotope substrate re-distribution among glycolysis, pentose and de novo fatty acid synthesis in MIA pancreatic adenocarcinoma cells. Limited oxidative pentose-phosphate synthesis, glucose contribution to acetyl CoA and de novo fatty acid synthesis closely correlated with decreased cell proliferation. The stable isotope-based dynamic metabolic profile of MIA cells indicated a significant dose-dependent decrease in macromolecule synthesis, which was detected at lower drug doses and before the appearance of apoptosis markers. Normal fibroblasts (CRL-1501) did not show morphological or metabolic signs of apoptosis likely due to their slow rate of growth and metabolic activity. This indicates that limiting carbon re-cycling and rapid substrate mobilisation from glycogen may be an effective and selective target site for new drug development in rapidly dividing cancer cells. In conclusion, pancreatic cancer cell growth arrest and death are closely associated with a characteristic decrease in glycogen breakdown and glucose carbon re-distribution towards RNA/DNA and fatty acids during CP-320626 treatment
- …