9 research outputs found

    Antisense oligonucleotide-based splicing correction in individuals with leber congenital amaurosis due to compound heterozygosity for the c.2991+1655A>G mutation in CEP290

    Get PDF
    Leber congenital amaurosis (LCA) is a rare inherited retinal disorder affecting approximately 1:50,000 people worldwide. So far, mutations in 25 genes have been associated with LCA, with CEP290 (encoding the Centrosomal protein of 290 kDa) being the most frequently mutated gene. The most recurrent LCA-causing CEP290 mutation, c.2991+1655A>G, causes the insertion of a pseudoexon into a variable proportion of CEP290 transcripts. We previously demonstrated that antisense oligonucleotides (AONs) have a high therapeutic potential for patients homozygously harbouring this mutation, although to date, it is unclear whether rescuing one single allele is enough to restore CEP290 function. Here, we assessed the AON efficacy at RNA, protein and cellular levels in samples that are compound heterozygous for this mutation, together with a protein-truncating mutation in CEP290. We demonstrate that AONs can efficiently restore splicing and increase protein levels. However, due to a high variability in ciliation among the patient-derived cell lines, the efficacy of the AONs was more difficult to assess at the cellular level. This observation points towards the importance of the severity of the second allele and possibly other genetic variants present in each individual. Overall, AONs seem to be a promising tool to treat CEP290-associated LCA, not only in homozygous but also in compound heterozygous carriers of the c.2991+1655A>G variant

    Development of refractive errors - what can we learn from inherited retinal dystrophies?

    Get PDF
    PURPOSE: It is unknown which retinal cells are involved in the retina-to-sclera signaling cascade causing myopia. As inherited retinal dystrophies (IRD) are characterized by dysfunction of a single retinal cell type and have a high risk of refractive errors, a study investigating the affected cell type, causal gene and refractive error in IRDs may provide insight herein. DESIGN: Case-control study. METHODS: _Study population:_ 302 patients with IRD from two ophthalmogenetic centers in the Netherlands. _Reference population:_ population-based Rotterdam Study-III and ERF Study (N=5,550). Distributions and mean spherical equivalent (SE) were calculated for main affected cell type and causal gene; and risks of myopia and hyperopia were evaluated using logistic regression. RESULTS: Bipolar cell related dystrophies were associated with the highest risk of SE high myopia 239.7; OR mild hyperopia 263.2, both P<0.0001; SE -6.86 D [SD 6.38]); followed by cone dominated dystrophies (OR high myopia 19.5, P<0.0001; OR high hyperopia 10.7, P=0.033; SE -3.10 D [SD 4.49]); rod dominated dystrophies (OR high myopia 10.1, P<0.0001; OR high hyperopia 9.7, P=0.001; SE -2.27 D [SD 4.65]); and RPE related dystrophies (OR low myopia 2.7; P=0.001; OR high hyperopia 5.8; P=0.025; SE -0.10 D [SD 3.09]). Mutations in RPGR (SE -7.63 D [SD 3.31]) and CACNA1F (SE -5.33 D [SD 3.10]) coincided with the highest degree of myopia; in CABP4 (SE 4.81 D [SD 0.35]) with the highest degree of hyperopia. CONCLUSIONS: Refractive errors, in particular myopia, are common in IRD. The bipolar synapse, and the inner and outer segments of the photoreceptor may serve as critical sites for myopia development

    LONGITUDINAL STUDY OF RPE65-ASSOCIATED INHERITED RETINAL DEGENERATIONS

    Get PDF
    PURPOSE: To study the disease course of RPE65-associated inherited retinal degenerations (IRDs) as a function of the genotype, define a critical age for blindness, and identify potential modifiers. METHODS: Forty-five patients with IRD from 33 families with biallelic RPE65 mutations, 28 stemming from a genetic isolate. We collected retrospective data from medical charts. Coexisting variants in 108 IRD-associated genes were identified with Molecular Inversion Probe analysis. RESULTS: Most patients were diagnosed within the first years of life. Daytime visual function ranged from near-normal to blindness in the first four decades and met WHO criteria for blindness for visual acuity and visual field in the fifth decade. p.(Thr368His) was the most common variant (54%). Intrafamilial variability and interfamilial variability in disease severity and progression were observed. Molecular Inversion Probe analysis confirmed all RPE65 variants and identified one additional variant in LRAT and one in EYS in two separate patients. CONCLUSION: All patients with RPE65-associated IRDs developed symptoms within the first year of life. Visual function in childhood and adolescence varied but deteriorated inevitably toward blindness after age 40. In this study, genotype was not predictive of clinical course. The variance in severity of disease could not be explained by double hits in other IRD genes

    The common ABCA4 variant p.Asn1868ile shows nonpenetrance and variable expression of stargardt disease when present in trans with severe variants

    Get PDF
    PURPOSE. To assess the occurrence and the disease expression of the common p.Asn1868Ile variant in patients with Stargardt disease (STGD1) harboring known, monoallelic causal ABCA4 variants. METHODS. The coding and noncoding regions of ABCA4 were sequenced in 67 and 63 STGD1 probands respectively, harboring monoallelic ABCA4 variants. In case p.Asn1868Ile was detected, segregation analysis was performed whenever possible. Probands and affected siblings harboring p.Asn1868Ile without additional variants in cis were clinically evaluated retrospe

    Diagnostic exome sequencing in 266 Dutch patients with visual impairment

    Get PDF
    Inherited eye disorders have a large clinical and genetic heterogeneity, which makes genetic diagnosis cumbersome. An exome-sequencing approach was developed in which data analysis was divided into two steps: the vision gene panel and exome analysis. In the vision gene panel analysis, variants in genes known to cause inherited eye disorders were assessed for pathogenicity. If no causative variants were detected and when the patient consented, the entire exome data was analyzed. A total of 266 Dutch patients with different types of inherited eye disorders, including inherited retinal dystrophies, cataract, developmental eye disorders and optic atrophy, were investigated. In the vision gene panel analysis (likely), causative variants were detected in 49% and in the exome analysis in an additional 2% of the patients. The highest detection rate of (likely) causative variants was in patients with inherited retinal dystrophies, for instance a yield of 63% in patients with retinitis pigmentosa. In patients with developmental eye defects, cataract and optic atrophy, the detection rate was 50, 33 and 17%, respectively. An exome-sequencing approach enables a genetic diagnosis in patients with different types of inherited eye disorders using one test. The exome approach has the same detection rate as targeted panel sequencing tests, but offers a number of advantages. For instance, the vision gene panel can be frequently and easily updated with additional (novel) eye disorder genes. Determination of the genetic diagnosis improved the clinical diagnosis, regarding the assessment of the inheritance pattern as well as future disease perspective

    Defining inclusion criteria and endpoints for clinical trials: a prospective cross-sectional study in CRB1-associated retinal dystrophies

    Get PDF
    Purpose: To investigate the retinal structure and function in patients with CRB1-associated retinal dystrophies (RD) and to explore potential clinical endpoints. Methods: In this prospective cross-sectional study, 22 patients with genetically confirmed CRB1-RD (aged 6–74 years), and who had a decimal best-corrected visual acuit

    Clinical characterization of 66 patients with congenital retinal disease due to the deep-intronic c.2991+1655A>G mutation in CEP290

    Get PDF
    PURPOSE. To describe the phenotypic spectrum of retinal disease caused by the c.2991+1655A>G mutation in CEP290 and to compare disease severity between homozygous and compound heterozygous patients. METHODS. Medical records were reviewed for best-corrected visual acuity (BCVA), age of onset, fundoscopy descriptions. Foveal outer nuclear layer (ONL) and ellipsoid zone (EZ) presence was assessed using spectral-domain optical coherence tomography (SD-OCT). Differences between compound heterozygous and homozygous patients were analyzed based on visual performance and visual development. RESULTS. A total of 66 patients were included. The majority of patients had either light perception or no light perception. In the remaining group of 14 patients, median BCVA was 20/195 Snellen (0.99 LogMAR; range 0.12–1.90) for the right eye, and 20/148 Snellen (0.87 LogMAR; range 0.22–1.90) for the left. Homozygous patients tended to be more likely to develop light perception compared to more severely affected compound heterozygous patients (P = 0.080) and are more likely to improve from no light perception to light perception (P = 0.022) before the age of 6 years. OCT data were available in 12 patients, 11 of whom had retained foveal ONL and EZ integrity up to 48 years (median 23 years) of age. CONCLUSIONS. Homozygous patients seem less severely affected compared to their compound-heterozygous peers. Improvement of visual function may occur in the early years of life, suggesting a time window for therapeutic intervention up to the approximate age of 17 years. This period may be extended by an intact foveal ONL and EZ on OCT

    The spectrum of structural and functional abnormalities in female carriers of pathogenic variants in the RPGR gene

    Get PDF
    PURPOSE. The purpose of this study was to investigate the phenotype and long-term clinical course of female carriers of RPGR mutations. METHODS. This was a retrospective cohort study of 125 heterozygous RPGR mutation carriers from 49 families. RESULTS. Eighty-three heterozygotes were from retinitis pigmentosa (RP) pedigrees, 37 were from cone-/cone-rod dystrophy (COD/CORD) pedigrees, and 5 heterozygotes were from pedigrees with mixed RP/CORD or unknown diagnosis. Mutations were located in exon 1-14 and in ORF15 in 42 of 125 (34%) and 83 of 125 (66%) subjects, respectively. The mean age at the first examination was 34.4 years (range, 2.1 to 86.0 years). The median follow-up time in heterozygotes with longitudinal data (n = 62) was 12.2 years (range, 1.1 to 52.2 years). Retinal pigmentary changes were present in 73 (58%) individuals. Visual symptoms were reported in 51 (40%) cases. Subjects with both symptoms and pigmentary fundus changes were older than the other heterozygotes (P = 0.01) and had thinner foveal outer retinas (P = 0.006). Complete expression of the RP or CORD phenotype was observed in 29 (23%) heterozygotes, although usually in milder forms than in affected male relatives. Best-corrected visual acuity (BCVA) was <20/40 and <20/400 in at least one eye in 45 of 116 (39%) and 11 of 116 (9%) heterozygotes, respectively. Myopia was observed in 74 of 101 (73%) subjects and was associated with lower BCVA (P = 0.006). Increasing age was associated with lower BCVA (P = 0.002) and decreasing visual field size (P = 0.012; I4e isopter). CONCLUSIONS. RPGR mutations lead to a phenotypic spectrum in female carriers, with myopia as a significantly aggravating factor. Complete disease expression is observed in some individuals, who may benefit from future (gene) therapeutic options

    Development of Refractive Errors—What Can We Learn From Inherited Retinal Dystrophies?

    No full text
    Purpose It is unknown which retinal cells are involved in the retina-to-sclera signaling cascade causing myopia. As inherited retinal dystrophies (IRD) are characterized by dysfunction of a single retinal cell type and have a high risk of refractive errors, a study investigating the affected cell type, causal gene, and refractive error in IRDs may provide insight herein. Design Case-control study. Methods STUDY POPULATION: Total of 302 patients with IRD from 2 ophthalmogenetic centers in the Netherlands. REFERENCE POPULATION: Population-based Rotterdam Study-III and Erasmus Rucphen Family Study (N = 5550). Distributions and mean spherical equivalent (SE) were calculated for main affected cell type and causal gene; and risks of myopia and hyperopia were evaluated using logistic regression. Results Bipolar cell-related dystrophies were associated with the highest risk of SE high myopia 239.7; odds ratio (OR) mild hyperopia 263.2, both P <.0001; SE −6.86 diopters (D) (standard deviation [SD] 6.38), followed by cone-dominated dystrophies (OR high myopia 19.5, P <.0001; OR high hyperopia 10.7, P =.033; SE −3.10 D [SD 4.49]); rod dominated dystrophies (OR high myopia 10.1, P <.0001; OR high hyperopia 9.7, P =.001; SE −2.27 D [SD 4.65]), and retinal pigment epithelium (RPE)-related dystrophies (OR low myopia 2.7; P =.001; OR high hyperopia 5.8; P =.025; SE −0.10 D [SD 3.09]). Mutations in RPGR (SE −7.63 D [SD 3.31]) and CACNA1F (SE −5.33 D [SD 3.10]) coincided with the highest degree of myopia and in CABP4 (SE 4.81 D [SD 0.35]) with the highest degree of hyperopia. Conclusions Refractive errors, in particular myopia, are common in IRD. The bipolar synapse and the inner and outer segments of the photoreceptor may serve as critical sites for myopia development
    corecore