8 research outputs found

    Kinematic Clues to Bar Evolution for Galaxies in the Local Universe: Why the Fastest Rotating Bars are Rotating Most Slowly

    Get PDF
    We have used Spitzer images of a sample of 68 barred spiral galaxies in the local universe to make systematic measurements of bar length and bar strength. We combine these with precise determinations of the corotation radii associated with the bars, taken from our previous study, which used the phase change from radial inflow to radial outflow of gas at corotation, based on high-resolution two-dimensional velocity fields in Hα taken with a Fabry-Pérot spectrometer. After presenting the histograms of the derived bar parameters, we study their dependence on the galaxy morphological type and on the total stellar mass of the host galaxy, and then produce a set of parametric plots. These include the bar pattern speed versus bar length, the pattern speed normalized with the characteristic pattern speed of the outer disk versus the bar strength, and the normalized pattern speed versus R, the ratio of corotation radius to bar length. To provide guidelines for our interpretation, we used recently published simulations, including disk and dark matter halo components. Our most striking conclusion is that bars with values of R < 1.4, previously considered dynamically fast rotators, can be among the slowest rotators both in absolute terms and when their pattern speeds are normalized. The simulations confirm that this is because as the bars are braked, they can grow longer more quickly than the outward drift of the corotation radius. We conclude that dark matter halos have indeed slowed down the rotation of bars on Gyr timescales. © 2017. The American Astronomical Society. All rights reserved.

    Euclid preparation XXVIII. Forecasts for ten different higher-order weak lensing statistics

    Get PDF
    Recent cosmic shear studies have shown that higher-order statistics (HOS) developed by independent teams now outperform standard two-point estimators in terms of statistical precision thanks to their sensitivity to the non-Gaussian features of large-scale structure. The aim of the Higher-Order Weak Lensing Statistics (HOWLS) project is to assess, compare, and combine the constraining power of ten different HOS on a common set of Euclid-like mocks, derived from N-body simulations. In this first paper of the HOWLS series, we computed the nontomographic (Ωm, σ8) Fisher information for the one-point probability distribution function, peak counts, Minkowski functionals, Betti numbers, persistent homology Betti numbers and heatmap, and scattering transform coefficients, and we compare them to the shear and convergence two-point correlation functions in the absence of any systematic bias. We also include forecasts for three implementations of higher-order moments, but these cannot be robustly interpreted as the Gaussian likelihood assumption breaks down for these statistics. Taken individually, we find that each HOS outperforms the two-point statistics by a factor of around two in the precision of the forecasts with some variations across statistics and cosmological parameters. When combining all the HOS, this increases to a 4.5 times improvement, highlighting the immense potential of HOS for cosmic shear cosmological analyses with Euclid. The data used in this analysis are publicly released with the paper

    Euclid preparation. TBD. Forecast impact of super-sample covariance on 3x2pt analysis with Euclid

    Full text link
    Deviations from Gaussianity in the distribution of the fields probed by large-scale structure surveys generate additional terms in the data covariance matrix, increasing the uncertainties in the measurement of the cosmological parameters. Super-sample covariance (SSC) is among the largest of these non-Gaussian contributions, with the potential to significantly degrade constraints on some of the parameters of the cosmological model under study -- especially for weak lensing cosmic shear. We compute and validate the impact of SSC on the forecast uncertainties on the cosmological parameters for the Euclid photometric survey, obtained with a Fisher matrix analysis, both considering the Gaussian covariance alone and adding the SSC term -- computed through the public code PySSC. The photometric probes are considered in isolation and combined in the `3×\times2pt' analysis. We find the SSC impact to be non-negligible -- halving the Figure of Merit of the dark energy parameters (w0w_0, waw_a) in the 3×\times2pt case and substantially increasing the uncertainties on Ωm,0,w0\Omega_{{\rm m},0}, w_0, and σ8\sigma_8 for cosmic shear; photometric galaxy clustering, on the other hand, is less affected due to the lower probe response. The relative impact of SSC does not show significant changes under variations of the redshift binning scheme, while it is smaller for weak lensing when marginalising over the multiplicative shear bias nuisance parameters, which also leads to poorer constraints on the cosmological parameters. Finally, we explore how the use of prior information on the shear and galaxy bias changes the SSC impact. Improving shear bias priors does not have a significant impact, while galaxy bias must be calibrated to sub-percent level to increase the Figure of Merit by the large amount needed to achieve the value when SSC is not included.Comment: 22 pages, 13 figure

    Euclid preparation TBD. The effect of baryons on the Halo Mass Function

    Full text link
    The Euclid photometric survey of galaxy clusters stands as a powerful cosmological tool, with the capacity to significantly propel our understanding of the Universe. Despite being sub-dominant to dark matter and dark energy, the baryonic component in our Universe holds substantial influence over the structure and mass of galaxy clusters. This paper presents a novel model to precisely quantify the impact of baryons on galaxy cluster virial halo masses, using the baryon fraction within a cluster as proxy for their effect. Constructed on the premise of quasi-adiabaticity, the model includes two parameters calibrated using non-radiative cosmological hydrodynamical simulations and a single large-scale simulation from the Magneticum set, which includes the physical processes driving galaxy formation. As a main result of our analysis, we demonstrate that this model delivers a remarkable one percent relative accuracy in determining the virial dark matter-only equivalent mass of galaxy clusters, starting from the corresponding total cluster mass and baryon fraction measured in hydrodynamical simulations. Furthermore, we demonstrate that this result is robust against changes in cosmological parameters and against varying the numerical implementation of the sub-resolution physical processes included in the simulations. Our work substantiates previous claims about the impact of baryons on cluster cosmology studies. In particular, we show how neglecting these effects would lead to biased cosmological constraints for a Euclid-like cluster abundance analysis. Importantly, we demonstrate that uncertainties associated with our model, arising from baryonic corrections to cluster masses, are sub-dominant when compared to the precision with which mass-observable relations will be calibrated using Euclid, as well as our current understanding of the baryon fraction within galaxy clusters.Comment: 18 pages, 10 figures, 4 tables, 1 appendix, abstract abridged for arXiv submissio

    The truncation of the disk of NGC 4565: Detected up to z = 4 kpc, with star formation, and affected by the warp

    Get PDF
    Context. The hierarchical model of galaxy formation suggests that galaxies are continuously growing. However, our position inside the Milky Way prevents us from studying the disk edge. Truncations are low surface brightness features located in the disk outskirts of external galaxies. They indicate where the disk brightness abruptly drops, and their location is thought to change dynamically. In previous analyses of Milky Way-like galaxies, truncations were detected up to 3 kpc above the mid-plane, but whether they remain present beyond that height remains unclear. Aims. Our goal is to determine whether truncations can be detected above 3 kpc in height in the Milky Way-like galaxy NGC 4565 and thus establish the actual disk thickness. We also aim to study how the truncation relates to disk properties such as star formation activity or the warp. Methods. We performed a vertical study of the disk of the NGC 4565 edge in unprecedented detail. We explored the truncation radius at different heights above and below the disk mid-plane (0., < z <., 8 kpc) and at different wavelengths. We used new ultra-deep optical data (ÎŒg,lim = 30.5 mag arcsec2; 3Ï within 10 A - 10 arcsec2 boxes) in the g, r, and i broadbands, along with near-ultraviolet, far-ultraviolet, Hα, and H ÂŻI observations. Results. We detect the truncation up to 4 kpc in the g, r, and i ultra-deep bands, which is 1 kpc higher than in any previous study for any galaxy. The radial position of the truncation remains constant up to 3 kpc, while higher up it is located at a smaller radius. This result is independent of the wavelength but is affected by the presence of the warp. Conclusions. We propose an inside-out growth scenario for the formation of the disk of NGC 4565. Our results point towards the truncation feature being linked to a star-forming threshold and to the onset of the disk warp

    Extragalactic Magnetism with SOFIA (SALSA Legacy Program). IV. Program Overview and First Results on the Polarization Fraction

    No full text
    Abstract We present the first data release of the Survey on extragALactic magnetiSm with SOFIA (SALSA Legacy Program) with a set of 14 nearby (&lt;20 Mpc) galaxies with resolved imaging polarimetric observations using HAWC+ from 53 to 214 ÎŒm at a resolution of 5″–18″ (90 pc–1 kpc). We introduce the definitions of and background on extragalactic magnetism and present the scientific motivation and sample selection of the program. Here we focus on the general trends in the emissive polarization fraction. Far-infrared polarimetric observations trace the thermal polarized emission of magnetically aligned dust grains across the galaxy disks with polarization fractions of P = 0%–15% in the cold, T d = [19, 48] K, and dense, log 10 ( N H I + H 2 [ cm − 2 ] ) = [ 19.96 , 22.91 ] , interstellar medium. The spiral galaxies show a median 〈P 154 ÎŒm〉 = 3.3% ± 0.9% across the disks. We report the first polarized spectrum of starburst galaxies showing a minimum within 89–154 ÎŒm. The falling 53–154 ÎŒm polarized spectrum may be due to a decrease in the dust grain alignment efficiency produced by variations in dust temperatures along the line of sight in the galactic outflow. We find that the starburst galaxies and the star-forming regions within normal galaxies have the lowest polarization fractions. We find that 50% (seven out of 14) of the galaxies require a broken power law in the P − N H I + H 2 and P − T d relations with three different trends. Group 1 has a relative increase of anisotropic random B-fields produced by compression or shear of B-fields in the galactic outflows, starburst rings, and inner bars of galaxies, and groups 2 and 3 have a relative increase of isotropic random B-fields driven by star-forming regions in the spiral arms and/or an increase of dust grain alignment efficiency caused by shock-driven regions or evolutionary stages of a galaxy.</jats:p

    Euclid preparation XVI. Exploring the ultra-low surface brightness Universe with Euclid/VIS

    No full text
    Context. While Euclid is an ESA mission specifically designed to investigate the nature of dark energy and dark matter, the planned unprecedented combination of survey area (∌15 000 deg2), spatial resolution, low sky-background, and depth also make Euclid an excellent space observatory for the study of the low surface brightness Universe. Scientific exploitation of the extended low surface brightness structures requires dedicated calibration procedures that are yet to be tested. Aims. We investigate the capabilities of Euclid to detect extended low surface brightness structure by identifying and quantifying sky-background sources and stray-light contamination. We test the feasibility of generating sky flat-fields to reduce large-scale residual gradients in order to reveal the extended emission of galaxies observed in the Euclid survey. Methods. We simulated a realistic set of Euclid/VIS observations, taking into account both instrumental and astronomical sources of contamination, including cosmic rays, stray-light, zodiacal light, interstellar medium, and the cosmic infrared background, while simulating the effects of background sources in the field of view. Results. We demonstrate that a combination of calibration lamps, sky flats, and self-calibration would enable recovery of emission at a limiting surface brightness magnitude of ÎŒlim = 29.5−0.27+0.08 mag arcsec−2 (3σ, 10 × 10 arcsec2) in the Wide Survey, and it would reach regions deeper by 2 mag in the Deep Surveys. Conclusions.Euclid/VIS has the potential to be an excellent low surface brightness observatory. Covering the gap between pixel-to-pixel calibration lamp flats and self-calibration observations for large scales, the application of sky flat-fielding will enhance the sensitivity of the VIS detector at scales larger than 1″, up to the size of the field of view, enabling Euclid to detect extended surface brightness structures below ÎŒlim = 31 mag arcsec−2 and beyond
    corecore