85 research outputs found

    Euclid preparation. XXVII. Covariance model validation for the 2-point correlation function of galaxy clusters

    No full text
    Aims. We validate a semi-analytical model for the covariance of real-space 2-point correlation function of galaxy clusters. Methods. Using 1000 PINOCCHIO light cones mimicking the expected Euclid sample of galaxy clusters, we calibrate a simple model to accurately describe the clustering covariance. Then, we use such a model to quantify the likelihood analysis response to variations of the covariance, and investigate the impact of a cosmology-dependent matrix at the level of statistics expected for the Euclid survey of galaxy clusters. Results. We find that a Gaussian model with Poissonian shot-noise does not correctly predict the covariance of the 2-point correlation function of galaxy clusters. By introducing few additional parameters fitted from simulations, the proposed model reproduces the numerical covariance with 10 per cent accuracy, with differences of about 5 per cent on the figure of merit of the cosmological parameters Ωm\Omega_{\rm m} and σ8\sigma_8. Also, we find that the cosmology-dependence of the covariance adds valuable information that is not contained in the mean value, significantly improving the constraining power of cluster clustering. Finally, we find that the cosmological figure of merit can be further improved by taking mass binning into account. Our results have significant implications for the derivation of cosmological constraints from the 2-point clustering statistics of the Euclid survey of galaxy clusters

    Euclid preparation. XXVII. Covariance model validation for the 2-point correlation function of galaxy clusters

    No full text
    Aims. We validate a semi-analytical model for the covariance of real-space 2-point correlation function of galaxy clusters. Methods. Using 1000 PINOCCHIO light cones mimicking the expected Euclid sample of galaxy clusters, we calibrate a simple model to accurately describe the clustering covariance. Then, we use such a model to quantify the likelihood analysis response to variations of the covariance, and investigate the impact of a cosmology-dependent matrix at the level of statistics expected for the Euclid survey of galaxy clusters. Results. We find that a Gaussian model with Poissonian shot-noise does not correctly predict the covariance of the 2-point correlation function of galaxy clusters. By introducing few additional parameters fitted from simulations, the proposed model reproduces the numerical covariance with 10 per cent accuracy, with differences of about 5 per cent on the figure of merit of the cosmological parameters Ωm\Omega_{\rm m} and σ8\sigma_8. Also, we find that the cosmology-dependence of the covariance adds valuable information that is not contained in the mean value, significantly improving the constraining power of cluster clustering. Finally, we find that the cosmological figure of merit can be further improved by taking mass binning into account. Our results have significant implications for the derivation of cosmological constraints from the 2-point clustering statistics of the Euclid survey of galaxy clusters

    Euclid preparation. XXVII. Covariance model validation for the 2-point correlation function of galaxy clusters

    No full text
    Aims. We validate a semi-analytical model for the covariance of real-space 2-point correlation function of galaxy clusters. Methods. Using 1000 PINOCCHIO light cones mimicking the expected Euclid sample of galaxy clusters, we calibrate a simple model to accurately describe the clustering covariance. Then, we use such a model to quantify the likelihood analysis response to variations of the covariance, and investigate the impact of a cosmology-dependent matrix at the level of statistics expected for the Euclid survey of galaxy clusters. Results. We find that a Gaussian model with Poissonian shot-noise does not correctly predict the covariance of the 2-point correlation function of galaxy clusters. By introducing few additional parameters fitted from simulations, the proposed model reproduces the numerical covariance with 10 per cent accuracy, with differences of about 5 per cent on the figure of merit of the cosmological parameters Ωm\Omega_{\rm m} and σ8\sigma_8. Also, we find that the cosmology-dependence of the covariance adds valuable information that is not contained in the mean value, significantly improving the constraining power of cluster clustering. Finally, we find that the cosmological figure of merit can be further improved by taking mass binning into account. Our results have significant implications for the derivation of cosmological constraints from the 2-point clustering statistics of the Euclid survey of galaxy clusters

    Euclid preparation: XVI. Exploring the ultra-low surface brightness Universe with Euclid/VIS

    No full text

    Euclid preparation. XXVII. Covariance model validation for the 2-point correlation function of galaxy clusters

    No full text
    Aims. We validate a semi-analytical model for the covariance of real-space 2-point correlation function of galaxy clusters. Methods. Using 1000 PINOCCHIO light cones mimicking the expected Euclid sample of galaxy clusters, we calibrate a simple model to accurately describe the clustering covariance. Then, we use such a model to quantify the likelihood analysis response to variations of the covariance, and investigate the impact of a cosmology-dependent matrix at the level of statistics expected for the Euclid survey of galaxy clusters. Results. We find that a Gaussian model with Poissonian shot-noise does not correctly predict the covariance of the 2-point correlation function of galaxy clusters. By introducing few additional parameters fitted from simulations, the proposed model reproduces the numerical covariance with 10 per cent accuracy, with differences of about 5 per cent on the figure of merit of the cosmological parameters Ωm\Omega_{\rm m} and σ8\sigma_8. Also, we find that the cosmology-dependence of the covariance adds valuable information that is not contained in the mean value, significantly improving the constraining power of cluster clustering. Finally, we find that the cosmological figure of merit can be further improved by taking mass binning into account. Our results have significant implications for the derivation of cosmological constraints from the 2-point clustering statistics of the Euclid survey of galaxy clusters

    Euclid preparation. XXVII. Covariance model validation for the 2-point correlation function of galaxy clusters

    No full text
    Aims. We validate a semi-analytical model for the covariance of real-space 2-point correlation function of galaxy clusters. Methods. Using 1000 PINOCCHIO light cones mimicking the expected Euclid sample of galaxy clusters, we calibrate a simple model to accurately describe the clustering covariance. Then, we use such a model to quantify the likelihood analysis response to variations of the covariance, and investigate the impact of a cosmology-dependent matrix at the level of statistics expected for the Euclid survey of galaxy clusters. Results. We find that a Gaussian model with Poissonian shot-noise does not correctly predict the covariance of the 2-point correlation function of galaxy clusters. By introducing few additional parameters fitted from simulations, the proposed model reproduces the numerical covariance with 10 per cent accuracy, with differences of about 5 per cent on the figure of merit of the cosmological parameters Ωm\Omega_{\rm m} and σ8\sigma_8. Also, we find that the cosmology-dependence of the covariance adds valuable information that is not contained in the mean value, significantly improving the constraining power of cluster clustering. Finally, we find that the cosmological figure of merit can be further improved by taking mass binning into account. Our results have significant implications for the derivation of cosmological constraints from the 2-point clustering statistics of the Euclid survey of galaxy clusters

    Euclid preparation. XXVII. Covariance model validation for the 2-point correlation function of galaxy clusters

    No full text
    Aims. We validate a semi-analytical model for the covariance of real-space 2-point correlation function of galaxy clusters. Methods. Using 1000 PINOCCHIO light cones mimicking the expected Euclid sample of galaxy clusters, we calibrate a simple model to accurately describe the clustering covariance. Then, we use such a model to quantify the likelihood analysis response to variations of the covariance, and investigate the impact of a cosmology-dependent matrix at the level of statistics expected for the Euclid survey of galaxy clusters. Results. We find that a Gaussian model with Poissonian shot-noise does not correctly predict the covariance of the 2-point correlation function of galaxy clusters. By introducing few additional parameters fitted from simulations, the proposed model reproduces the numerical covariance with 10 per cent accuracy, with differences of about 5 per cent on the figure of merit of the cosmological parameters Ωm\Omega_{\rm m} and σ8\sigma_8. Also, we find that the cosmology-dependence of the covariance adds valuable information that is not contained in the mean value, significantly improving the constraining power of cluster clustering. Finally, we find that the cosmological figure of merit can be further improved by taking mass binning into account. Our results have significant implications for the derivation of cosmological constraints from the 2-point clustering statistics of the Euclid survey of galaxy clusters

    Euclid preparation. TBD. The effect of linear redshift-space distortions in photometric galaxy clustering and its cross-correlation with cosmic shear

    No full text
    International audienceCosmological surveys planned for the current decade will provide us with unparalleled observations of the distribution of galaxies on cosmic scales, by means of which we can probe the underlying large-scale structure (LSS) of the Universe. This will allow us to test the concordance cosmological model and its extensions. However, precision pushes us to high levels of accuracy in the theoretical modelling of the LSS observables, in order not to introduce biases in the estimation of cosmological parameters. In particular, effects such as redshift-space distortions (RSD) can become relevant in the computation of harmonic-space power spectra even for the clustering of the photometrically selected galaxies, as it has been previously shown in literature studies. In this work, we investigate the contribution of linear RSD, as formulated in the Limber approximation by arXiv:1902.07226, in forecast cosmological analyses with the photometric galaxy sample of the Euclid survey, in order to assess their impact and quantify the bias on the measurement of cosmological parameters that neglecting such an effect would cause. We perform this task by producing mock power spectra for photometric galaxy clustering and weak lensing, as expected to be obtained from the Euclid survey. We then use a Markov chain Monte Carlo approach to obtain the posterior distributions of cosmological parameters from such simulated observations. We find that neglecting the linear RSD leads to significant biases both when using galaxy correlations alone and when these are combined with cosmic shear, in the so-called 3×\times2pt approach. Such biases can be as large as 5 σ5\,\sigma-equivalent when assuming an underlying Λ\LambdaCDM cosmology. When extending the cosmological model to include the equation-of-state parameters of dark energy, we find that the extension parameters can be shifted by more than 1 σ1\,\sigma

    Euclid preparation: XXVIII. Modelling of the weak lensing angular power spectrum

    No full text
    International audienceThis work considers which higher-order effects in modelling the cosmic shear angular power spectra must be taken into account for Euclid. We identify which terms are of concern, and quantify their individual and cumulative impact on cosmological parameter inference from Euclid. We compute the values of these higher-order effects using analytic expressions, and calculate the impact on cosmological parameter estimation using the Fisher matrix formalism. We review 24 effects and find the following potentially need to be accounted for: the reduced shear approximation, magnification bias, source-lens clustering, source obscuration, local Universe effects, and the flat Universe assumption. Upon computing these explicitly, and calculating their cosmological parameter biases, using a maximum multipole of ℓ=5000\ell=5000, we find that the magnification bias, source-lens clustering, source obscuration, and local Universe terms individually produce significant ( >0.25σ\,>0.25\sigma) cosmological biases in one or more parameters, and accordingly must be accounted for. In total, over all effects, we find biases in Ωm\Omega_{\rm m}, Ωb\Omega_{\rm b}, hh, and σ8\sigma_{8} of 0.73σ0.73\sigma, 0.28σ0.28\sigma, 0.25σ0.25\sigma, and −0.79σ-0.79\sigma, respectively, for flat Λ\LambdaCDM. For the w0waw_0w_aCDM case, we find biases in Ωm\Omega_{\rm m}, Ωb\Omega_{\rm b}, hh, nsn_{\rm s}, σ8\sigma_{8}, and waw_a of 1.49σ1.49\sigma, 0.35σ0.35\sigma, −1.36σ-1.36\sigma, 1.31σ1.31\sigma, −0.84σ-0.84\sigma, and −0.35σ-0.35\sigma, respectively; which are increased relative to the Λ\LambdaCDM due to additional degeneracies as a function of redshift and scale
    • 

    corecore