3,263 research outputs found

    Issues for computer modelling of room acoustics in non-concert hall settings

    Get PDF
    The basic principle of common room acoustics computer models is the energy-based geometrical room acoustics theory. The energy-based calculation relies on the averaging effect provided when there are many reflections from many different directions, which is well suited for large concert halls at medium and high frequencies. In recent years computer modelling has become an established tool in architectural acoustics design thanks to the advance in computing power and improved understanding of the modelling accuracy. However concert hall is only one of many types of built environments that require good acoustic design. Increasingly computer models are being sought for non-concert hall applications, such as in small rooms at low frequencies, flat rooms in workplace surroundings, and long enclosures such as underground stations. In these built environments the design issues are substantially difference from that of concert halls and in most cases the common room acoustics models will needed to be modified or totally re-formulated in order to deal with these new issues. This paper looks at some examples of these issues. In workplace environments we look at the issues of directional propagation and volume scattering by furniture and equipment instead of the surface scattering that is common assumed in concert hall models. In small rooms we look at the requirement of using wave models, such as boundary element models, or introducing phase information into geometrical room acoustics models to determine wave behaviours. Of particular interest is the ability of the wave models to provide phase information that is important not only for room modes but for the construction of impulse response for auralisation. Some simulated results using different modelling techniques will be presented to illustrate the problems and potential solutions

    A novel RNA-binding motif in omnipotent suppressors of translation termination, ribosomal proteins and a ribosome modification enzyme?

    Get PDF
    Using computer methods for database search, multiple alignment, protein sequence motif analysis and secondary structure prediction, a putative new RNA-binding motif was identified. The novel motif is conserved in yeast omnipotent translation termination suppressor SUP1, the related DOM34 protein and its pseudogene homologue; three groups of eukaryotic and archaeal ribosomal proteins, namely L30e, L7Ae/S6e and S12e; an uncharacterized Bacillus subtilis protein related to the L7A/S6e group; and Escherichia coli ribosomal protein modification enzyme RimK. We hypothesize that a new type of RNA-binding domain may be utilized to deliver additional activities to the ribosome

    Functional clues for hypothetical proteins based on genomic context analysis in prokaryotes

    Get PDF
    Three integrated genomic context methods were used to annotate uncharacterized proteins in 102 bacterial genomes. Of 7853 orthologous groups with unknown function containing 45,110 proteins, 1738 groups could be linked to functionally associated partners. In many cases, those partners are uncharacterized themselves (hinting at newly identified modules) or have been described in general terms only. However, we were able to assign pathways, cellular processes or physical complexes for 273 groups (encompassing 3624 previously functionally uncharacterized proteins)

    Diagnosis and treatment of hereditary angioedema with normal C1 inhibitor

    Get PDF
    Until recently it was assumed that hereditary angioedema is a disease that results exclusively from a genetic deficiency of the C1 inhibitor. In 2000, families with hereditary angioedema, normal C1 inhibitor activity and protein in plasma were described. Since then numerous patients and families with that condition have been reported. Most of the patients by far were women. In many of the affected women, oral contraceptives, hormone replacement therapy containing estrogens, and pregnancies triggered the clinical symptoms. Recently, in some families mutations in the coagulation factor XII (Hageman factor) gene were detected in the affected persons

    Update of the G2D tool for prioritization of gene candidates to inherited diseases

    Get PDF
    G2D (genes to diseases) is a web resource for prioritizing genes as candidates for inherited diseases. It uses three algorithms based on different prioritization strategies. The input to the server is the genomic region where the user is looking for the disease-causing mutation, plus an additional piece of information depending on the algorithm used. This information can either be the disease phenotype (described as an online Mendelian inheritance in man (OMIM) identifier), one or several genes known or suspected to be associated with the disease (defined by their Entrez Gene identifiers), or a second genomic region that has been linked as well to the disease. In the latter case, the tool uses known or predicted interactions between genes in the two regions extracted from the STRING database. The output in every case is an ordered list of candidate genes in the region of interest. For the first two of the three methods, the candidate genes are first retrieved through sequence homology search, then scored accordingly to the corresponding method. This means that some of them will correspond to well-known characterized genes, and others will overlap with predicted genes, thus providing a wider analysis. G2D is publicly available at http://www.ogic.ca/projects/g2d_2

    Industrialization of Polymer Solar Cells – phase 1

    Get PDF

    The atomic structure of protons and hydrides in Sm1.92Ca0.08Sn2O7-δ pyrochlore from DFT calculations and FTIR spectroscopy

    Get PDF
    A combined density functional theory and Fourier transform infrared spectroscopy study of the structure and specific site preference of protons and hydrides in the pyrochlore Sm1.92Ca0.08Sn2O7-delta is presented. Two protonic sites of particular high stability are identified, both located on O(1) oxygen atoms closely associated with a Ca dopant. Further, the unexpected presence of Ho hydride defects in undoped, oxygen deficient Sm2Sn2O7 is reported. Finally, the stretching frequencies and relative intensities for these and other sites are calculated. The main features of the Fourier transform infrared spectra are hereby resolved. (C) 2012 American Institute of Physics. [http://dx.doi.org/10.1063/1.4737786
    corecore