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A combined density functional theory and Fourier transform infrared spectroscopy study of

the structure and specific site preference of protons and hydrides in the pyrochlore

Sm1.92Ca0.08Sn2O7�d is presented. Two protonic sites of particular high stability are identified,

both located on O(1) oxygen atoms closely associated with a Ca dopant. Further, the unexpected

presence of HO hydride defects in undoped, oxygen deficient Sm2Sn2O7 is reported. Finally, the

stretching frequencies and relative intensities for these and other sites are calculated. The main

features of the Fourier transform infrared spectra are hereby resolved. VC 2012 American Institute of
Physics. [http://dx.doi.org/10.1063/1.4737786]

I. INTRODUCTION

For many years, perovskites have been the benchmark

system in the pursuit of oxide based proton conducting

electrolytes.1–4 Although extensively studied, no perovskite

based material has obtained a sufficiently high protonic con-

ductivity for commercial applications. Hence, interest has

shifted to other structures. In spite of a large number of stud-

ies relating to high temperature oxide ion migration in

A2B2O7 pyrochlore systems,5 there are relatively few studies

of proton conduction at lower temperatures (<550 �C).4

The pyrochlore structure has space group Fd-3m with

Wyckoff positions 16(c) and 16(d) for the A and B metallic

cations and 48(f) and 8(b) for the two structurally inequiva-

lent oxygen atoms, denoted O(1) and O(2). The B cations are

thus octahedrally coordinated by O(1) oxide ions while the A
cations are tetrahedrally coordinated by O(2) oxide ions (see

Fig. 1).6,7 Pyrochlores thus contain a network of apex-linked

BO6 octahedra, which are expected to be critical for proton

migration as found in perovskites.7

Investigations of high temperature proton conductivity in

pyrochlores have so far been focused on acceptor doped deriv-

atives of Ln2B2O7, where Ln¼ lanthanide and Y, and B¼Zr

and Ti. The original work claiming significant proton conduc-

tivity in La2Zr2O7 was performed by Shimura et al.8 Subse-

quently, infrared (IR) spectroscopy,9,10 electrochemical

measurements,11 and quantum mechanical simulations7 have

been performed to further investigate the proton mobility in the

La2Zr2O7 pyrochlore system. More recently, the influence of

the B-site ion on proton conductivity in Sm1.92Ca0.08B2O7�d

phases (B¼Ti, Sn, Zr, and Ce) has also been studied,12 and

EMF measurements confirmed protons as the dominant charge

carriers in Sm1.92Ca0.08Ti2O7�d at T � 400 �C.13

Several basic structural properties of protons in pyro-

chlores are still unresolved, and it is of interest to firmly es-

tablish the specific atomic configurations and protonic sites

relevant for protonic diffusion. However, the specific pro-

tonic sites may be difficult to determine experimentally

using, e.g., microscopy or x-rays.

In the last decades, ab initio calculations have become

an attractive alternative due to the rapid increase in available

computational power. The explicit atomic modelling pro-

vides direct insight into atomic interactions and configura-

tions and a wide range of properties may be calculated, e.g.,

atomic structures and vibrational frequencies may be deter-

mined with good accuracy.14

In the present work, density functional theory (DFT) cal-

culations and Fourier transform infrared spectroscopy (FTIR)

data are combined to gain insight into the Sm1.92Ca0.08Sn2O7�d

structure at operating conditions. Using DFT, the CaSm and VO

defective structure is determined, as well as the site preferences

for the hydrogen/deuterium defect. Here, the Kröger-Vink

notation scheme is used.15 The results are confirmed by calcu-

lating the corresponding OH stretch vibrational frequencies

and comparing with experimentally obtained FTIR spectra.

II. EXPERIMENTAL

Sm1.92Ca0.08Sn2O7�d was prepared via conventional

solid state synthesis from Sm2O3, CaCO3, and SnO2 at

1550 �C. Hydrogenation/deuteration was achieved by expo-

sure to 0.4 bar gaseous H2O/D2O for 120 h at 300 �C.

The Fourier transform infrared (FTIR) measurements

were performed in the range (560–6000 cm�1). Each spec-

trum represents an average of 400 runs. A reference spec-

trum was measured on ground KBr before collecting each

sample. For further details on the experiment, please refer to

Eurenius et al.16

III. ELECTRONIC STRUCTURE CALCULATIONS

The calculations were performed using the VASP package

using the projector augmented wave (PAW) method17,18

a)Author to whom correspondence should be addressed. Electronic mail:

teve@dtu.dk.
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with exchange and correlation functionals by Perdew, Burke,

and Entzerhof.19 The Brillouin zone was sampled using a

2� 2� 2 Monkhorst-Pack grid,20 and the wavefunctions

were determined via plane wavefunctions up to 400 eV. The

electronic convergence criterion was 10�5 eV, and the force

convergence criterion was 0.01 eV/Å. All super cells are

charge neutral.

Having six 4f electrons, samarium is difficult to treat

accurately with DFT. Here, we have used the PAW potential

entitled “Sm_3”, developed by Kresse and Joubert.18 This is

optimized for trivalent samarium by fixing five of the 4f

electrons in the core while generating the pseudopotential.

All of the 5s and 5p states are treated as valence states. Par-

ticularly concerning Lanthanides, the PAW description is

superior to the also popular ultrasoft-pseudopotential

approach21 since the valence wavefunction in the core

remains exact and hence favours the correct valence state

and geometry.22 Further, the PAW approach has repeatedly

been successfully applied to compounds and alloys contain-

ing both Samarium and other Lanthanides.22–24

All internal degrees of freedom were relaxed during the

ionic relaxations, but only the 5 oxygen atoms closest to the

H defect were free to move in the vibrational analysis. Since

restraining a part of the system could lead to inaccuracies, a

test calculation with no constrained atoms was performed.

The resulting constrained and non-constrained OH vibra-

tional frequencies differed by less than one cm�1, confirming

the validity of this approach.

For determining atomic charges, the Bader charge parti-

tioning method is applied.25 This has proven suitable for OH

containing systems in general and for hydrogen in oxides in

particular, albeit requiring increased computational

accuracy.26–29 Therefore, the electronic convergence crite-

rion was decreased to 10�7 eV for obtaining high accuracy

electronic densities via expanding the wavefunctions and the

localized charges on 300� 300� 300 and 450� 450� 450

real-space uniform grids, respectively. The algorithm by

Henkelman et al. was used for the actual charge

partitioning.29–31

IV. RESULTS AND DISCUSSION

A. Thermodynamics

The Gibbs free energy change of a chemical reaction is

in the dilute limit given by

DG ¼ DE� TDS; (1)

where DE denotes the internal energy, T denotes the temper-

ature, and DS denotes the entropy change. Several correc-

tions to known inaccuracies of DFT may be employed. Here

we only correct for the known overbinding of O2.7 Further

corrections, e.g., for Fermi level inaccuracies or electronic

correlation could be employed but are non-trivial and beyond

the objective of this study.

The unit cell of Sm2Sn2O7 contains 8 chemical units

(88 atoms) so the experimentally obtained starting com-

position (Sm1.92Ca0.08Sn2O6.96) was modelled by inclusion

of one CaSm dopant and one oxygen vacancy, yielding

Sm1.875Ca0.125Sn2O6.875. This size cell has previously been

found to be a good compromise between accuracy and com-

putational expense.7 Given the fixed doping concentration of

the synthesized material, any interlattice defect interactions

are intended and desired.

Initially, the cubic unit cell constant was optimized to

10.536 Å in good agreement with previous experiments

(10.514 Å).16 The relative vacancy formation energies of

O(1) and O(2) defects were determined to ca. 160 kJ/mol

favoring VO(1) vacancies. The most stable VO(1) vacancy,

shown in Fig. 1, is used as reference structure for the remain-

ing of this article. This is stabilized by 16 kJ/mol compared

to the second most stable VO(1) site.

Given an oxygen deficient structure, incorporation of

protons is known to proceed via filling of oxygen vacancies

by water3

H2OðgÞ þ V��O þ Ox
O $ 2 OH�O: (2)

The stabilities of 20 different protonic sites were investi-

gated. All of the most stable sites were found closely associ-

ated with a CaSm dopant. When formed via reaction (2),

these were stabilized by up to 137 kJ/mol H, in reasonable

accordance with experimental data of ca. 100 kJ/mol.16 Simi-

lar thermodynamics were found by Björketun et al. in the

case of Ca doped La2Zr2O7 pyrochlore.7 As mentioned

above, prediction of absolute defect formation energies is

difficult and a variety of correctional schemes may be

employed for increased accuracy. However, the energy gain

of reaction (2) is so high that full occupation of the oxygen

vacancies should be achieved under working membrane con-

ditions. Since both theory and experiments suggest highly

negative OH formation energies, the reported incomplete

(72%) hydration of the oxygen vacancies, based on thermog-

ravimetric analyses,32 is most likely due to migration of

FIG. 1. Most stable configuration of the oxygen vacant Sm1.875Ca0.12

Sn2O6.875. The structurally different O(1) and O(2) oxygen sites are indicated.

The Sn-Sn distance around the oxygen vacancy is shortened to 3.68 Å com-

pared to 3.73 Å in the defect free structure (Sm: omitted for clarity, Sn: grey,

inside octahedra, Ca: green, O: red).

033705-2 Bork et al. J. Appl. Phys. 112, 033705 (2012)

Downloaded 08 Nov 2012 to 192.38.67.112. Redistribution subject to AIP license or copyright; see http://jap.aip.org/about/rights_and_permissions



CaSm dopants into grain boundaries or to kinetic limitations

in the experiment.

The two most stable sites for the hydrogenic defect were

bonded to structurally identical oxygen, O(1), located at the

former oxygen vacancy sites. These two OHO(1) defects dif-

fer by the spatial orientation of the OH bond and differ in

stability by just 2.3 kJ/mol. The H-Ca distances are 2.48 and

4.14 Å. Two other sites of interest were identified, destabi-

lized by ca. 18 kJ/mol, and distanced by 4.70 and 5.59 Å

from the dopant. These four sites are shown in Fig. 2.

At elevated temperatures, protons may migrate to sites

near oxygen vacancies. Here, we only consider the most sta-

ble VO(1) containing structure, shown in Fig. 1. 10 different

protonic sites were investigated, and two sites of particular

low energy were found. These were both bound to an O(1)

atom neighbouring the VO(1) vacancy but differed in the spa-

tial orientation of the OH bond (see Fig. 3). These structures

were however >150 kJ/mol less stable than the correspond-

ing oxygen stoichiometric structures.

Also the structure of hydrogenated, non-doped, but oxy-

gen deficient Sm2Sn2O7 was determined. In the most stable

structure, the proton was found not as a hydroxyl but located

at the oxygen vacancy as an H�O defect (see Fig. 4). This is in

accordance with previous assumptions and recent ab initio
calculations.33,34 Formally, H�O is a hydride and thus, similar

to an oxide, has two valence electrons and an ionic radius of

ca. 1.4 Å. Also similar to oxides, the incorporation of hydride

defects requires electrons, which in this case must be

donated from the remaining lattice atoms

H2ðgÞ þ 2 V��O þ 2 e0 $ 2 H�O: (3)

Even disregarding entropy, the defect formation energy cor-

responding to this reaction was >100 kJ/mol favoring gase-

ous hydrogen. Hence, it is evident that the expected HO

defect concentration is very low at ambient conditions. Its

general properties and state of charge are nevertheless of

fundamental interest and are further described in the follow-

ing section.

At moderate temperatures, structural dopants are prereq-

uisites for oxygen vacancies and hence dissolved protons via

reaction (2), but dopants are also known to act as trapping

sites preventing fast diffusion.35,36 From these results, it is

clear that also in this system, significant trapping effects may

be present if too low dopant concentrations are used, i.e., if

the proton has to diffuse through effectively undoped regions

between dopants. Due to the presence of several low energy

sites at varying distance from the dopant, as shown in Fig. 2,

FIG. 2. Most stable configuration (white H) of a proton in

Sm1.875Ca0.125Sn2O7. The Ca-H distance is 2.48 Å and the Ca-O-H angle is

ca. 63�. The yellow hydrogen are included to illustrate the three second

most stable sites (Sm and O(2): omitted for clarity, Sn: inside octahedra, Ca:

green, O(1): Red, H: white and yellow).

FIG. 3. Most stable (white H) and second most stable (yellow H) configura-

tion of a proton and an oxygen vacancy in Sm1.875Ca0.125Sn2O7 (Sm and

O(2): omitted for clarity, Sn: inside octahedra, Ca: green, O(1): red, H: white

and yellow).

FIG. 4. Most stable configuration of a proton and an oxygen vacancy in

Sm2Sn2O7. The Sn-H distance is 1.9 Å while normal Sn-O distances are

2.1 Å. The charge on the HO species is �0.44e (Sm: yellow, Sn: grey (inside

octahedra), O(1): red, O(2): omitted for clarity, H: white).
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a path of low energy sites between dopants is available if

one dopant is present in each unit cell. However, a full ki-

netic analysis of the trapping effects of dopants is beyond the

scope of this study.

B. Atomic charge distributions

To analyse and predict possible multiple defect configura-

tions, electrostatic defect interaction is the most important pa-

rameter since all present defects are electrically charged. It is

generally assumed that oppositely charged defects attract

while defects of similar charge repel each other. Recently, it

has however been demonstrated that elastic lattice interactions

can stabilize otherwise unstable configurations.37

To explain the configurations of the most stable struc-

tures, shown in Figs. 1–4, these were investigated using the

Bader charge partitioning method. The results are summar-

ized in Table I. The determined atomic charges are not inte-

gers and smaller in magnitude than the integer charges

predicted by traditional defect chemistry. The signs are how-

ever unchanged.

It is thus possible to assign the attractive interaction

between the CaSm dopant and either of the VO or the OHO

defects (Figs. 1 and 2) mainly to Coulomb attraction. How-

ever, since the total charge of the CaSmVO defect (0.67e) is

of same sign and magnitude as the OHO defect, it is not im-

mediately clear why the proton is attracted rather than

repelled by the CaSmVO defect (Fig. 3). However, the stabil-

ity of two OHO defects in oxides has recently been dem-

onstrated and explained by elastic lattice interaction,

minimizing lattice distortion by gathering defects.37,38 The

overall attractive force between the CaSmVO and OHO

defects is thus proposed to be due to this effect.

The HO defect has been proposed as a possible hydride

site, responsible for the observed hydride conductivity in

some oxides.39–42 The apparent hydride conductivity has

only been observed under highly reducing conditions and

high temperatures; both conditions promoting high VO con-

centration and mobility. This is consistent with the HO defect

being the charge carrier. Here, the integrated electronic den-

sity on the HO defect was determined to 1.44 electrons and

the total charge thus �0.44e. Hence, the charge of the

hydride is similar in magnitude to the charge designated to

the proton. However, since the hydride is located at an oxy-

gen vacancy, V1:26�
O , the defect is positive and should be

referred to as H0:82�
O .

C. Vibrational frequencies

From the experimentally obtained FTIR spectra several

distinct peaks were identified, confirming the presence of

dissolved protons in the structure (see Fig. 5). The two most

intense peaks show clear isotopic shifts with isotopic shift

ratios, �OH=�OD � 1:35, referring to the change in mass

between O-H and O-D groups in accordance with the

expected value.43 Similar to the main O-H peak, the main O-

D peak has at least one shoulder. However, this is probably

the phonon overtone at ca. 2540 cm�1, seen in the vacuum

dried sample. The minor peaks at 2615 and 3510 cm�1 are

also phonon overtones not linked to structural protons or

deuterons.

The protonated spectrum was resolved using Lorentzian

functions

Lð�Þ ¼ A 1

p

1
2
B

ð� � �0Þ2 þ ð12BÞ
2
; (4)

where A and B are parameters determining the height and

width of the peak, centered at �0. Using four Lorentzians

centered at 3311, 3387, 3422, and 3454 cm�1, a near-perfect

fit was obtained. Since the areas of the peaks, A, are propor-

tional to the occupancies of the OH sites,44 these were here-

after readily available (see Table II).

TABLE I. Summary of the atomic Bader charges (in e). The charges pre-

dicted by traditional defect chemistry are listed for comparison.

Defect structure Fig. CaSm VO OHO HO

Trad. def. chem. �1.00 2.00 1.00 1.00

CaSmVO 1 �0.56 1.26

CaSmOH(1)O 2 �0.56 0.57

CaSmVOOH(a)O 3 �0.59 1.26 0.55

Undoped HO 4 0.82

FIG. 5. FTIR spectra of protonated and deuterated Sm1.92Ca0.08Sn2O7�d

(solid lines). � indicates frequencies not linked to O-H/O-D vibrations. Vac-

uum dried samples are shown for comparison (broken lines). The ratios

between the corresponding OH and OD frequencies are, as expected, close

to 1.35. Data from Ref. 14.

TABLE II. Calculated and experimental intensities at 300 �C and OH

stretch frequencies (in cm�1) of the most stable proton sites, relative to the

main peak. The H(1-4) sites are illustrated in Fig. 2.

DFT FTIR

Defect structure Intens. Wavenum. Intens. Wavenum.

CaSmOH(1)O 100% 3453 100% 3454

CaSmOH(2)O 59% 3312 72% 3311

CaSmOH(3)O 5% 3252

CaSmOH(4)O 3% 3321

Undoped OHO �0 3340

Undoped HO �0 3280

033705-4 Bork et al. J. Appl. Phys. 112, 033705 (2012)
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The vibrational frequencies depend on the second deriv-

ative of the energy and are inherently more difficult to calcu-

late than, e.g., simple energy differences. Consequently,

absolute agreement between DFT and FTIR results is seldom

achieved. Typically, GGA functionals overestimate bond

lengths and underestimate frequencies,45 but although unable

to produce accurate absolute numbers, trends and shifts gen-

erally are good.46–48

To quantify this problem, frequency calculations on gas-

eous H2O and H2O2 were performed and compared to exper-

imental values.49,50 With the present computational

parameters, the calculated OH stretch frequencies were all

overestimated by 50–90 cm�1. This suggests that the calcu-

lated OH frequencies for the present systems should be

adjusted accordingly. By adjusting the calculated frequencies

by �80 cm�1 an excellent agreement between theory and

experiment was obtained, both with respect to wavenumbers

and intensities (see Table II). The two most intense peaks, at

3454 and 3311 cm�1, are thus unambiguously assigned to

OH vibration from the OH(1) and OH(2) sites, respectively,

both shown in Fig. 2.

Earlier studies by Omata et al.,9,10 showing three bands in

the OH frequency region in protonated La1.96Ca0.04Zr2O7�d,

assigned one of the intense bands to protons bound to O(2) ox-

ygen. This was based on empirical relations between O-H and

O-O distances and O-H wavenumbers.51 Our results show that

a proton at the O(2) site is destabilized by ca. 60 kJ/mol com-

pared to the most stable OHO(1) site. This is in agreement with

the findings of Björketun et al. for La2Zr2O7.7 The OHO(2)

defect is thus insignificantly populated at ambient

temperatures.

We were unable to identify the shoulders at 3387 and

3422 cm�1 with certainty, although the H(4) site is a possible

candidate. Otherwise, these shoulders may be attributed to

structures involving a different VO(1) than shown in Fig. 1 or

structures involving more than two defects, e.g., two Ca dop-

ants and a proton or two protons and a Ca dopant.7,37

V. CONCLUSIONS

Using density functional theory calculations and Fourier

transform infrared spectroscopy, as-prepared, protonated,

and deuterated samples of Sm1.92Ca0.08Sn2O7�d pyrochlore

were investigated. In the most stable configuration, the VO

defect was located on an O(1) site next to the CaSm dopant.

Two protonic sites of particular low energy were found,

whereby the magnitudes and intensities of the main bands of

the FTIR spectrum could be reproduced with high certainty.

To explain the attractive potentials between the various

defects, their atomic charges were determined. Hereby, the

stability of all structures could be rationalized. In accordance

with previous results,37 the OHO defect was found to be

charged by ca. 0.55e. We also report the finding of an HO de-

fective oxide structure and determine this defect as a hydride.

ACKNOWLEDGMENTS

The authors thank N. Bonanos for valuable scientific

discussions. This work has been funded by Risø DTU as part

of the “Initiative for Hydrogen Separation Membranes.”

K.E.J. Eurenius has further been supported by Stiftelsen Wil-

helm and Martina Lundgrens Vetenskapsfond. C.S. Knee

also acknowledges the financial support of the Swedish

Research Council (Vetenskapsrådet). The Center for Atomic
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