5,716 research outputs found

    Intrinsic charge transport on the surface of organic semiconductors

    Full text link
    The novel technique based on air-gap transistor stamps enabled realization of the intrinsic (not dominated by static disorder) transport of the electric-field-induced charge carriers on the surface of rubrene crystals over a wide temperature range. The signatures of the intrinsic transport are the anisotropy of the carrier mobility, mu, and the growth of mu with cooling. The anisotropy of mu vanishes in the activation regime at lower temperatures, where the charge transport becomes dominated by shallow traps. The deep traps, deliberately introduced into the crystal by X-ray radiation, increase the field-effect threshold without affecting the mobility. These traps filled above the field-effect threshold do not scatter the mobile polaronic carriers.Comment: 10 pages, 4 figure

    Closed-Flux Solutions to the Constraints for Plane Gravity Waves

    Full text link
    The metric for plane gravitational waves is quantized within the Hamiltonian framework, using a Dirac constraint quantization and the self-dual field variables proposed by Ashtekar. The z axis (direction of travel of the waves) is taken to be the entire real line rather than the torus (manifold coordinatized by (z,t) is RxR rather than S1S_1 x R). Solutions to the constraints proposed in a previous paper involve open-ended flux lines running along the entire z axis, rather than closed loops of flux; consequently, these solutions are annihilated by the Gauss constraint at interior points of the z axis, but not at the two boundary points. The solutions studied in the present paper are based on closed flux loops and satisfy the Gauss constraint for all z.Comment: 18 pages; LaTe

    Discovering New Physics in the Decays of Black Holes

    Get PDF
    If the scale of quantum gravity is near a TeV, the LHC will be producing one black hole (BH) about every second, thus qualifying as a BH factory. With the Hawking temperature of a few hundred GeV, these rapidly evaporating BHs may produce new, undiscovered particles with masses ~100 GeV. The probability of producing a heavy particle in the decay depends on its mass only weakly, in contrast with the exponentially suppressed direct production. Furthemore, BH decays with at least one prompt charged lepton or photon correspond to the final states with low background. Using the Higgs boson as an example, we show that it may be found at the LHC on the first day of its operation, even with incomplete detectors.Comment: 4 pages, 3 figure

    Plane waves in quantum gravity: breakdown of the classical spacetime

    Get PDF
    Starting with the Hamiltonian formulation for spacetimes with two commuting spacelike Killing vectors, we construct a midisuperspace model for linearly polarized plane waves in vacuum gravity. This model has no constraints and its degrees of freedom can be interpreted as an infinite and continuous set of annihilation and creation like variables. We also consider a simplified version of the model, in which the number of modes is restricted to a discrete set. In both cases, the quantization is achieved by introducing a Fock representation. We find regularized operators to represent the metric and discuss whether the coherent states of the quantum theory are peaked around classical spacetimes. It is shown that, although the expectation value of the metric on Killing orbits coincides with a classical solution, its relative fluctuations become significant when one approaches a region where null geodesics are focused. In that region, the spacetimes described by coherent states fail to admit an approximate classical description. This result applies as well to the vacuum of the theory.Comment: 11 pages, no figures, version accepted for publication in Phys. Rev.

    Solid solution decomposition and Guinier-Preston zone formation in Al-Cu alloys: A kinetic theory with anisotropic interactions

    Get PDF
    Using methods of statistical kinetic theory parametrized with first-principles interatomic interactions that include chemical and strain contributions, we investigated the kinetics of decomposition and microstructure formation in Al-Cu alloys as a function of temperature and alloy concentration. We show that the decomposition of the solid solution forming platelets of copper, known as Guinier-Preston (GP) zones, includes several stages and that the transition from GP1 to GP2 zones is determined mainly by kinetic factors. With increasing temperature, the model predicts a gradual transition from platelet-like precipitates to equiaxial ones and at intermediate temperatures both precipitate morphologies may coexist.Comment: 9 pages, 8 figure

    Quantum geometry with intrinsic local causality

    Full text link
    The space of states and operators for a large class of background independent theories of quantum spacetime dynamics is defined. The SU(2) spin networks of quantum general relativity are replaced by labelled compact two-dimensional surfaces. The space of states of the theory is the direct sum of the spaces of invariant tensors of a quantum group G_q over all compact (finite genus) oriented 2-surfaces. The dynamics is background independent and locally causal. The dynamics constructs histories with discrete features of spacetime geometry such as causal structure and multifingered time. For SU(2) the theory satisfies the Bekenstein bound and the holographic hypothesis is recast in this formalism.Comment: Latex 33 pages, 7 Figure, epsfi

    Quantum Gravity Vacuum and Invariants of Embedded Spin Networks

    Get PDF
    We show that the path integral for the three-dimensional SU(2) BF theory with a Wilson loop or a spin network function inserted can be understood as the Rovelli-Smolin loop transform of a wavefunction in the Ashtekar connection representation, where the wavefunction satisfies the constraints of quantum general relativity with zero cosmological constant. This wavefunction is given as a product of the delta functions of the SU(2) field strength and therefore it can be naturally associated to a flat connection spacetime. The loop transform can be defined rigorously via the quantum SU(2) group, as a spin foam state sum model, so that one obtains invariants of spin networks embedded in a three-manifold. These invariants define a flat connection vacuum state in the q-deformed spin network basis. We then propose a modification of this construction in order to obtain a vacuum state corresponding to the flat metric spacetime.Comment: 15 pages, revised version to appear in Class. Quant. Gra

    Quantization of pure gravitational plane waves

    Get PDF
    Pure gravitational plane waves are considered as a special case of spacetimes with two commuting spacelike Killing vector fields. Starting with a midisuperspace that describes this kind of spacetimes, we introduce gauge-fixing and symmetry conditions that remove all non-physical degrees of freedom and ensure that the classical solutions are plane waves. In this way, we arrive at a reduced model with no constraints and whose only degrees of freedom are given by two fields. In a suitable coordinate system, the reduced Hamiltonian that generates the time evolution of this model turns out to vanish, so that all relevant information is contained in the symplectic structure. We calculate this symplectic structure and particularize our discussion to the case of linearly polarized plane waves. The reduced phase space can then be described by an infinite set of annihilation and creation like variables. We finally quantize the linearly polarized model by introducing a Fock representation for these variables.Comment: 11 pages, Revtex, no figure

    A candidate for a background independent formulation of M theory

    Full text link
    A class of background independent membrane field theories are studied, and several properties are discovered which suggest that they may play a role in a background independent form of M theory. The bulk kinematics of these theories are described in terms of the conformal blocks of an algebra G on all oriented, finite genus, two-surfaces. The bulk dynamics is described in terms of causal histories in which time evolution is specified by giving amplitudes to certain local changes of the states. Holographic observables are defined which live in finite dimensional states spaces associated with boundaries in spacetime. We show here that the natural observables in these boundary state spaces are, when G is chosen to be Spin(D) or a supersymmetric extension of it, generalizations of matrix model coordinates in D dimensions. In certain cases the bulk dynamics can be chosen so the matrix model dynamics is recoverd for the boundary observables. The bosonic and supersymmetric cases in D=3 and D=9 are studied, and it is shown that the latter is, in a certain limit, related to the matrix model formulation of M theory. This correspondence gives rise to a conjecture concerning a background independent form of M theory in terms of which excitations of the background independent membrane field theory that correspond to strings and D0 branes are identified.Comment: Latex 46 pages, 21 figures, new results included which lead to a modification of the statement of the basic conjecture. Presentation improve
    • …
    corecore