8 research outputs found

    Chemical analysis of bioactive substances in seven siberian Saussurea species

    Get PDF
    Main groups of biologically active substances of seven siberian Saussurea species (S. controversa DC., S. latifolia Ledeb., S. parviflora (Poir.) DC., S. frolowii Ledeb, S. amara (L.) DC., S. salicifolia (L.) DC. and S. daurica Adams) have been studied using paper, thin-layer, performance liquid chromatography, IR spectroscopy, spectrophotometry and mass spectrometry with inductively coupled plasma. Siberian Saussurea species have a rich elemental composition and contain a variety of phenolic compounds, amino acids, polysaccharides. The majority of polysaccharides are accumulated by S. controversa, S. salicifolia and S. frolowii. These plants contain a significant amount of calcium that may be a species characteristic. All plants contain quercetin and its glycosides, in some species luteolin, kaempferol, glycosides of apigenin and myricetin were revealed. Phenolic acids with predominant content of caffeic, chlorogenic and cinnamic acids were found in all the species. The maximum amount of phenolic acids and flavonoids was determined in the grass of S. latifolia, S. controversa and S. daurica. Characteristic absorption bands of lactone carbonyl of sesquiterpenoids in IR spectrum found in S. latifolia, S. controversa, S. daurica, S. amara and S. salicifolia. HPLC / UV analysis showed that peaks with absorption maxima of 242-246 nm due to the presence of α,β-unsaturated ketone group in the structure of ecdysteroids were found in S. salicifolia, S. controversa, S. daurica and S. latifolia

    A Role for KLF4 in Promoting the Metabolic Shift via TCL1 during Induced Pluripotent Stem Cell Generation

    Get PDF
    Reprogramming of somatic cells into induced pluripotent stem cells (iPSCs) is accompanied by morphological, functional, and metabolic alterations before acquisition of full pluripotency. Although the genome-wide effects of the reprogramming factors on gene expression are well documented, precise mechanisms by which gene expression changes evoke phenotypic responses remain to be determined. We used a Sendai virus-based system that permits reprogramming to progress in a strictly KLF4-dependent manner to screen for KLF4 target genes that are critical for the progression of reprogramming. The screening identified Tcl1 as a critical target gene that directs the metabolic shift from oxidative phosphorylation to glycolysis. KLF4-induced TCL1 employs a two-pronged mechanism, whereby TCL1 activates AKT to enhance glycolysis and counteracts PnPase to diminish oxidative phosphorylation. These regulatory mechanisms described here highlight a central role for a reprogramming factor in orchestrating the metabolic shift toward the acquisition of pluripotency during iPSC generation

    Chemical analysis of bioactive substances in seven siberian Saussurea species

    No full text
    Main groups of biologically active substances of seven siberian Saussurea species (S. controversa DC., S. latifolia Ledeb., S. parviflora (Poir.) DC., S. frolowii Ledeb, S. amara (L.) DC., S. salicifolia (L.) DC. and S. daurica Adams) have been studied using paper, thin-layer, performance liquid chromatography, IR spectroscopy, spectrophotometry and mass spectrometry with inductively coupled plasma. Siberian Saussurea species have a rich elemental composition and contain a variety of phenolic compounds, amino acids, polysaccharides. The majority of polysaccharides are accumulated by S. controversa, S. salicifolia and S. frolowii. These plants contain a significant amount of calcium that may be a species characteristic. All plants contain quercetin and its glycosides, in some species luteolin, kaempferol, glycosides of apigenin and myricetin were revealed. Phenolic acids with predominant content of caffeic, chlorogenic and cinnamic acids were found in all the species. The maximum amount of phenolic acids and flavonoids was determined in the grass of S. latifolia, S. controversa and S. daurica. Characteristic absorption bands of lactone carbonyl of sesquiterpenoids in IR spectrum found in S. latifolia, S. controversa, S. daurica, S. amara and S. salicifolia. HPLC / UV analysis showed that peaks with absorption maxima of 242-246 nm due to the presence of α,β-unsaturated ketone group in the structure of ecdysteroids were found in S. salicifolia, S. controversa, S. daurica and S. latifolia

    A Role for KLF4 in Promoting the Metabolic Shift via TCL1 during Induced Pluripotent Stem Cell Generation

    No full text
    Reprogramming of somatic cells into induced pluripotent stem cells (iPSCs) is accompanied by morphological, functional, and metabolic alterations before acquisition of full pluripotency. Although the genome-wide effects of the reprogramming factors on gene expression are well documented, precise mechanisms by which gene expression changes evoke phenotypic responses remain to be determined. We used a Sendai virus-based system that permits reprogramming to progress in a strictly KLF4-dependent manner to screen for KLF4 target genes that are critical for the progression of reprogramming. The screening identified Tcl1 as a critical target gene that directs the metabolic shift from oxidative phosphorylation to glycolysis. KLF4-induced TCL1 employs a two-pronged mechanism, whereby TCL1 activates AKT to enhance glycolysis and counteracts PnPase to diminish oxidative phosphorylation. These regulatory mechanisms described here highlight a central role for a reprogramming factor in orchestrating the metabolic shift toward the acquisition of pluripotency during iPSC generation
    corecore