50 research outputs found

    SynthÚse de nouveaux outils moléculaires pour l'imagerie in vivo d'oligo- et polysaccharides à la surface cellulaire

    No full text
    La premiÚre partie de ce travail est réalisé dans le but de préparer des produits pouvant jouer un rÎle trÚs important de l imagerie cellulaire des lipopolysaccharides sur la surface des cellules bactériennes, tout en utilisant des méthodes fiables telle que la chimie click . Dans un premier temps, nous avons synthétisé une premiÚre génération d outils fluorescents à base de rhodamine B et fluorescéine modifiée par une fonction oxyde de nitrile. Dans un deuxiÚme temps nous avons cherché les meilleures conditions d applications de la chimie click 3+2 sans cuivre, entre la fonction oxyde de nitrile et le motif saccharidique complémentaire portant une fonction vinylique. Finalement, nous avons appliquée, avec succÚs, la méthode click avec cuivre sur plusieurs types de bactéries portant sur leur membrane cellulaire des lipopolysaccharides ayant un motif Kdo fonctionnalisé par un groupement azoture déjà synthétiser au sein de notre équipe, et une sonde fluorescente porteuse d une fonction alcyne. Une nouvelle génération d outils de marquage saccharidique est en cours de finalisation dans le but d optimiser les conditions finales, tel que le dérivé de Kdo fonctionnalisé cette fois-ci par des dérivées cycliques, bicycliques et aromatiques porteurs d une fonction alcyne ou alcÚne, pour réaliser les derniers essais de marquage in vitro. Le stress oxydant est lié au vieillissement des cellules et à de nombreuses maladies: cardiovasculaire, cancer, diabÚte, Alzheimer Il est dû à un déséquilibre entre le systÚme oxydant / antioxydant au niveau des cellules, et se caractérise par la présence principalement de substance radicalaires réactives oxygénées. Dans le but d'identifier le taux de substances réactives oxygénées dans les cellules, le travail dans la deuxiÚme partie de la thÚse reposait sur la synthÚse multi étape d'une molécule fluorescente dérivée de la coumarine. Le composé ciblé est le peroxyde d'oxygÚne, connu sous le nom d'eau oxygénée. Possédant un ester vinyl-boronique, notre molécule sera oxydée et réarrangée en aldéhyde conduisant à la condensation intramoléculaire avec le groupement aminé adjacent pour former un cycle indolique, libérant ainsi de la fluorescence. La recherche des conditions optimales de la derniÚre étape de la voie synthétique sont toujours en cours d optimisation. Dans le futur, on cherchera les conditions optimales de la derniÚre étape de la synthÚse de la sonde spécifique au peroxyde d oxygÚne. Cette molécule est d'une importance remarquable comme sonde du stress oxydant. En réussissant cette étape, on pourra avoir en main une bibliothÚque de KDO fonctionnalisé afin d avoir des résultats satisfaisants in vivo.The first part of this work is done in order to prepare products that play a very important role in cellular imaging lipopolisaccharides on the surface of bacterial cells, while using reliable methods such as '' click chemistry ''. Initially, we synthesized the first generation of tools based fluorescent rhodamine B and fluorescein -modified nitrile oxide function. In a second step we sought the best possible applications of click chemistry 3+2 copper free, between the nitrile oxide function and the additional saccharide unit with a vinyl function. Finally, we applied successfully, the click method with copper on several types of bacteria on their cell membrane lipopolysaccharides having a pattern Kdo functionalized azide group already synthesized within our team, and a probe carrying a fluorescent alkyne. A new generation of tools saccharide marking is being finalized in order to optimize the final terms, such as derivative functionalized Kdo this time by cyclic, bicyclic and aromatic derivatives holders of an alkene or alkyne function to perform final testing of in vitro labeling. Oxidative stress is linked to cell aging and many diseases: cardiovascular disease, cancer, diabetes, Alzheimer's ... It is due to an imbalance between oxidant system/antioxidant in cells, and is characterized mainly by the presence of radical substance reactive oxygen. In order to identify the rate of reactive oxygen substances in cells, work in the second part of the thesis based on multi- step synthesis of a fluorescent molecule derived from coumarin. The target compound is oxygen peroxide, known as the name of hydrogen peroxide. Having a vinyl boronic ester, this molecule will be oxidized and rearranged aldehyde leading to intramolecular condensation with the adjacent amino group to form an indolique ring , thereby releasing fluorescence. The search for optimal conditions for the last step of the synthetic pathway is still being optimized. In the future, the optimal conditions for the last step of the synthesis of specific probe oxygen peroxide are sought. This molecule is remarkable importance as a probe of oxidative stress. By passing this step, we will have on hand a library of KDO functionalized to have satisfactory results in vivo.PARIS11-SCD-Bib. électronique (914719901) / SudocSudocFranceF

    ICBS 2021: Looking Toward the Next Decade of Chemical Biology

    No full text
    International audienc

    Dynamic imaging of cell wall polysaccharides by metabolic click-mediated labelling of pectins in living elongating cells

    No full text
    International audienceInvestigation of protein tracking in living plant cells has became a routine experiment with the emergence of reporter genes encoding fluorescent tags. Unfortunately, this imaging strategy is not applicable to glycans because their synthesis is not directly encoded by the genome. Indeed, complex glycans result from sequential additions and/or removals of monosaccharides by the glycosyltransferases and glycosidases of the cell’s biosynthetic machinery. To date, the imaging of cell wall polymers mainly relies on the use of antibodies or dyes that exhibit variable specificities. However, as immunolocalisation typically requires sample fixation, it does not provide access to the dynamics of living cells. The development of click chemistry in plant cell wall biology offers an alternative for live-cell labelling. It consists of the incorporation of a carbohydrate containing a bio-orthogonal chemical reporter into the target polysaccharide using the endogenous biosynthetic machinery of the cell. Once synthesized and deposited in the cell wall, the polysaccharide containing the analogue monosaccharide is covalently coupled to an exogenous fluorescent probe. Here, we developed a metabolic-click labelling approach which allows the imaging of cell wall polysaccharides in living and elongating cells without affecting cell viability. The protocol was established using the pollen tube, a useful model to follow cell wall dynamics due to its fast and tip-polarized growth, but was also successfully tested on Arabidopsis root cells and root hairs. This method offers the possibility of imaging metabolically incorporated sugars of viable and elongating cells, allowing the study of the long-term dynamics of labelled extracellular polysaccharides

    SCF‐ChemBio: Chemical Biology Tour de France

    No full text
    International audienceChemical biology is a steadily growing field that has traditionally struggled to clearly define its boundaries in a short sentence. However, it can be stated that through the development of chemical and physicochemical tools, concepts and methods, chemical biology aims to address or stimulate biological questions at the molecular level in living organisms. Chemical biologists design and develop molecular tools that can probe or modulate biological processes, in order to understand their function, and sometimes to modify it for specific applications, but also to observe and analyze these tools in complex biological environments. Essentially positioned as a fundamental approach, chemical biology often remains very close to potential applications as it builds molecular objects capable of reacting to a significant biological stimulus. Chemical biology therefore finds natural development in fields such as health for the design of drugs and diagnostic systems or the environment for applications in crop science and ecology

    Chémobiologie et maladies infectieuses : de Pasteur à la COVID-19.

    No full text
    International audienceLa pandĂ©mie inĂ©dite liĂ©e Ă  la COVID-19, maladie Ă©mergente causĂ©e par le SARS-CoV-2 (coronavirus 2 du syndrome respiratoire aigu sĂ©vĂšre), touche tous les continents. La lutte contre cette infection passe par des mesures d’hygiĂšne strictes, ainsi que le dĂ©veloppement de vaccins et de nouvelles thĂ©rapies. La chĂ©mobiologie, domaine de recherche Ă  l’interface de la chimie et de la biologie, dĂ©veloppe des approches chimiques, de la synthĂšse de molĂ©cules au dĂ©veloppement de nouvelles techniques, pour observer et comprendre le vivant Ă  l’échelle molĂ©culaire. Cette alliance de la chimie et de la biologie ouvre des perspectives excitantes pour comprendre les mĂ©canismes d’infection et mieux lutter contre les maladies infectieuses

    Glycosylation: The Direct Synthesis of 2-Acetamido-2-Deoxy-Sugar Glycosides

    No full text
    International audienceDeveloping methods for the stereoselective synthesis of glycosides, used in the assembly of glycoconjugates or bioactive oligosaccharides, has been essential for making progress in the field of glycosciences. The 2-acetamido-2-deoxy-glycopyranosyl units are the key motifs of these structures and many innovative methods have been elaborated to incorporate these units by stereoselective chemical glycosylation. Most of these methods introduce additional chemical steps to avoid the presence of the acetamide functional group next to the reacting anomeric center. This microreview details the direct but arduous approaches for the synthesis of glycosides in which the NHAc group is present during the glycosylation reaction. Our focus will be on the methods that have appeared in the last two decades

    Chémobiologie et maladies infectieuses : de Pasteur à la COVID-19.

    No full text
    International audienceLa pandĂ©mie inĂ©dite liĂ©e Ă  la COVID-19, maladie Ă©mergente causĂ©e par le SARS-CoV-2 (coronavirus 2 du syndrome respiratoire aigu sĂ©vĂšre), touche tous les continents. La lutte contre cette infection passe par des mesures d’hygiĂšne strictes, ainsi que le dĂ©veloppement de vaccins et de nouvelles thĂ©rapies. La chĂ©mobiologie, domaine de recherche Ă  l’interface de la chimie et de la biologie, dĂ©veloppe des approches chimiques, de la synthĂšse de molĂ©cules au dĂ©veloppement de nouvelles techniques, pour observer et comprendre le vivant Ă  l’échelle molĂ©culaire. Cette alliance de la chimie et de la biologie ouvre des perspectives excitantes pour comprendre les mĂ©canismes d’infection et mieux lutter contre les maladies infectieuses

    Identification of living Legionella pneumophila using species-specific metabolic lipopolysaccharide labeling.

    No full text
    International audienceLegionella pneumophila is a pathogenic bacterium involved in regular outbreaks characterized by a relatively high fatality rate and an important societal impact. Frequent monitoring of the presence of this bacterium in environmental water samples is necessary to prevent these epidemic events, but the traditional culture-based detection and identification method requires up to 10 days. Reported herein is a method allowing identification of Legionella pneumophila by metabolic lipopolysaccharide labeling which targets, for the first time, a precursor to monosaccharides that are specifically present within the O-antigen of the bacterium. This new approach allows easy detection of living Legionella pneumophila, while other Legionella species are not labeled
    corecore