19 research outputs found
Bremsstrahlung of a Quark Propagating through a Nucleus
The density of gluons produced in the central rapidity region of a heavy ion
collision is poorly known. We investigate the influence of the effects of
quantum coherence on the transverse momentum distribution of photons and gluons
radiated by a quark propagating through nuclear matter. We describe the case
that the radiation time substantially exceeds the nuclear radius (the relevant
case for RHIC and LHC energies), which is different from what is known as
Landau-Pomeranchuk-Migdal effect corresponding to an infinite medium. We find
suppression of the radiation spectrum at small transverse photon/gluon momentum
k_T, but enhancement for k_T>1GeV. Any nuclear effects vanish for k_T > 10GeV.
Our results allow also to calculate the k_T dependent nuclear effects in prompt
photon, light and heavy (Drell-Yan) dilepton and hadron production.Comment: Appendix A is extended compared to the version to be published in
Phys.Rev.
1+1 Dimensional Hydrodynamics for High-energy Heavy-ion Collisions
A 1+1 dimensional hydrodynamical model in the light-cone coordinates is used
to describe central heavy-ion collisions at ultrarelativistic bombarding
energies. Deviations from Bjorken's scaling are taken into account by choosing
finite-size profiles for the initial energy density. The sensitivity of fluid
dynamical evolution to the equation of state and the parameters of initial
state is investigated. Experimental constraints on the total energy of produced
particles are used to reduce the number of model parameters. Spectra of
secondary particles are calculated assuming that the transition from the
hydrodynamical stage to the collisionless expansion of matter occurs at a
certain freeze-out temperature. An important role of resonances in the
formation of observed hadronic spectra is demonstrated. The calculated rapidity
distributions of pions, kaons and antiprotons in central Au+Au collisions at
the c.m. energy 200 GeV per NN pair are compared with experimental data of the
BRAHMS Collaboration. Parameters of the initial state are reconstructed for
different choices of the equation of state. The best fit of these data is
obtained for a soft equation of state and Gaussian-like initial profiles of the
energy density, intermediate between the Landau and Bjorken limits.Comment: 43 pages, 27 figure
Nonperturbative Effects in Gluon Radiation and Photoproduction of Quark Pairs
We introduce a nonperturbative interaction for light-cone fluctuations
containing quarks and gluons. The interaction squeezes the transverse
size of these fluctuations in the photon and one does not need to simulate this
effect via effective quark masses. The strength of this interaction is fixed by
data. Data on diffractive dissociation of hadrons and photons show that the
nonperturbative interaction of gluons is much stronger. We fix the parameters
for the nonperturbative quark-gluon interaction by data for diffractive
dissociation to large masses (triple-Pomeron regime). This allows us to predict
nuclear shadowing for gluons which turns out to be not as strong as
perturbative QCD predicts. We expect a delayed onset of gluon shadowing at shadowing of quarks. Gluon shadowing turns out to be nearly scale
invariant up to virtualities due to presence of a semihard
scale characterizing the strong nonperturbative interaction of gluons. We use
the same concept to improve our description of gluon bremsstrahlung which is
related to the distribution function for a quark-gluon fluctuation and the
interaction cross section of a fluctuation with a nucleon. We expect
the nonperturbative interaction to suppress dramatically the gluon radiation at
small transverse momenta compared to perturbative calculations.Comment: 58 pages of Latex including 11 figures. Shadowing for soft gluons and
Fig. 6 are added as well as a few reference
METAPHYSICS OF MONEY IN THE WORKS OF HONORÉ DE BALZAC AND FYODOR DOSTOEVSKY
The author examines similarities and diff erences in the aesthetic
interpretation of the theme of money in terms of social realism of Balzac and
Christian realism of Dostoevsky. Such notions as “human mystery”, “a dark
side of human nature”, the “ME law”, “the law of love” are introduced to
achieve the aforementioned objective. As part of these notions, the article
analyzes artistic types and refl ection of both writers and shows the equalizing,
reducing, transforming and compensating functions of the monetary
absolute, which becomes a common equivalent of human freedom and
personality and creates conditions for a new inequality. The author reveals
anthropologic consequences caused by dominating principles of utilitarianism
and monetarist perception, highlighted in the novels by French and Russian
writers, that facilitate perversion and inversion of a hierarchy of values,
displacement of spiritual and moral fundamentals, mental impoverishment,
entropy and nihilism in the degrading societ
О роли книги в истории и культуре России
On the International scientific conference The Rumyantsev Readings, taken place in the Russian state library on April, 20-22th, 2010.В Российской государственной библиотеке (РГБ) 20—22 апреля 2010 г. прошла ежегодная международная научная конференция «Румянцевские чтения». Публикуем выступления участника пленарного заседания конференции: Б.Н. Тарасов
Synthesis of hydrides by interaction of intermetallic compounds with ammonia
Interaction of intermetallic compounds with ammonia was studied as a processing route to synthesize hydrides and hydridonitrides of intermetallic compounds having various stoichiometries and types of crystal structures, including A2B, AB, AB2, AB5 and A2B17 (A = Mg, Ti, Zr, Sc, Nd, Sm; B = transition metals, including Fe, Co, Ni, Ti and nontransitition elements, Al and B). In presence of NH4Cl used as an activator of the reaction between ammonia and intermetallic alloys, their interaction proceeds at rather mild P-T conditions, at temperatures 100–200 ºC and at pressures of 0.6–0.8 MPa. The mechanism of interaction of the alloys with ammonia appears to be temperature-dependent and, following a rise of the interaction temperature, it leads to the formation of interstitial hydrides; interstitial hydridonitrides; disproportionation products (binary hydride; new intermetallic hydrides and binary nitrides) or new metal-nitrogen-hydrogen compounds like magnesium amide Mg(NH2)2. The interaction results in the synthesis of the nanopowders where hydrogen and nitrogen atoms become incorporated into the crystal lattices of the intermetallic alloys. The nitrogenated materials have the smallest particle size, down to 40 nm, and a specific surface area close to 20 m2 /g
Asymmetric Interfaces in Epitaxial Off-Stoichiometric Fe3+xSi1−x/Ge/Fe3+xSi1−x Hybrid Structures: Effect on Magnetic and Electric Transport Properties
Three-layer iron-rich Fe3+xSi1−x/Ge/Fe3+xSi1−x (0.2 < x < 0.64) heterostructures on a Si(111) surface with Ge thicknesses of 4 nm and 7 nm were grown by molecular beam epitaxy. Systematic studies of the structural and morphological properties of the synthesized samples have shown that an increase in the Ge thickness causes a prolonged atomic diffusion through the interfaces, which significantly increases the lattice misfits in the Ge/Fe3+xSi1−x heterosystem due to the incorporation of Ge atoms into the Fe3+xSi1−x bottom layer. The resultant lowering of the total free energy caused by the development of the surface roughness results in a transition from an epitaxial to a polycrystalline growth of the upper Fe3+xSi1−x. The average lattice distortion and residual stress of the upper Fe3+xSi1−x were determined by electron diffraction and theoretical calculations to be equivalent to 0.2 GPa for the upper epitaxial layer with a volume misfit of −0.63% compared with a undistorted counterpart. The volume misfit follows the resultant interatomic misfit of |0.42|% with the bottom Ge layer, independently determined by atomic force microscopy. The variation in structural order and morphology significantly changes the magnetic properties of the upper Fe3+xSi1−x layer and leads to a subtle effect on the transport properties of the Ge layer. Both hysteresis loops and FMR spectra differ for the structures with 4 nm and 7 nm Ge layers. The FMR spectra exhibit two distinct absorption lines corresponding to two layers of ferromagnetic Fe3+xSi1−x films. At the same time, a third FMR line appears in the sample with the thicker Ge. The angular dependences of the resonance field of the FMR spectra measured in the plane of the film have a pronounced easy-axis type anisotropy, as well as an anisotropy corresponding to the cubic crystal symmetry of Fe3+xSi1−x, which implies the epitaxial orientation relationship of Fe3+xSi1−x (111)[0−11] || Ge(111)[1−10] || Fe3+xSi1−x (111)[0−11] || Si(111)[1−10]. Calculated from ferromagnetic resonance (FMR) data saturation magnetization exceeds 1000 kA/m. The temperature dependence of the electrical resistivity of a Ge layer with thicknesses of 4 nm and 7 nm is of semiconducting type, which is, however, determined by different transport mechanisms