136 research outputs found

    Cardiovascular Magnetic Resonance Imaging Feature Tracking: Impact of Training on Observer Performance and Reproducibility

    Get PDF
    BACKGROUND: Cardiovascular magnetic resonance feature tracking (CMR-FT) is increasingly used for myocardial deformation assessment including ventricular strain, showing prognostic value beyond established risk markers if used in experienced centres. Little is known about the impact of appropriate training on CMR-FT performance. Consequently, this study aimed to evaluate the impact of training on observer variance using different commercially available CMR-FT software. METHODS: Intra- and inter-observer reproducibility was assessed prior to and after dedicated one-hour observer training. Employed FT software included 3 different commercially available platforms (TomTec, Medis, Circle). Left (LV) and right (RV) ventricular global longitudinal as well as LV circumferential and radial strains (GLS, GCS and GRS) were studied in 12 heart failure patients and 12 healthy volunteers. RESULTS: Training improved intra- and inter-observer reproducibility. GCS and LV GLS showed the highest reproducibility before (ICC \u3e0.86 and \u3e0.81) and after training (ICC \u3e0.91 and \u3e0.92). RV GLS and GRS were more susceptible to tracking inaccuracies and reproducibility was lower. Inter-observer reproducibility was lower than intra-observer reproducibility prior to training with more pronounced improvements after training. Before training, LV strain reproducibility was lower in healthy volunteers as compared to patients with no differences after training. Whilst LV strain reproducibility was sufficient within individual software solutions inter-software comparisons revealed considerable software related variance. CONCLUSION: Observer experience is an important source of variance in CMR-FT derived strain assessment. Dedicated observer training significantly improves reproducibility with most profound benefits in states of high myocardial contractility and potential to facilitate widespread clinical implementation due to optimized robustness and diagnostic performance

    Impact of Right Atrial Physiology on Heart Failure and Adverse Events after Myocardial Infarction

    Get PDF
    Background: Right ventricular (RV) function is a known predictor of adverse events in heart failure and following acute myocardial infarction (AMI). While right atrial (RA) involvement is well characterized in pulmonary arterial hypertension, its relative contributions to adverse events following AMI especially in patients with heart failure and congestion need further evaluation. Methods: In this cardiovascular magnetic resonance (CMR)-substudy of AIDA STEMI and TATORT NSTEMI, 1235 AMI patients underwent CMR after primary percutaneous coronary intervention (PCI) in 15 centers across Germany (n = 795 with ST-elevation myocardial infarction and 440 with non-ST-elevation MI). Right atrial (RA) performance was evaluated using CMR myocardial feature tracking (CMR-FT) for the assessment of RA reservoir (total strain εs), conduit (passive strain εe), booster pump function (active strain εa), and associated strain rates (SR) in a blinded core-laboratory. The primary endpoint was the occurrence of major adverse cardiac events (MACE) 12 months post AMI. Results: RA reservoir (εs p = 0.061, SRs p = 0.049) and conduit functions (εe p = 0.006, SRe p = 0.030) were impaired in patients with MACE as opposed to RA booster pump (εa p = 0.579, SRa p = 0.118) and RA volume index (p = 0.866). RA conduit function was associated with the clinical onset of heart failure and MACE independently of RV systolic function and atrial fibrillation (AF) (multivariable analysis hazard ratio 0.95, 95% confidence interval 0.92 to 0.99, p = 0.009), while RV systolic function and AF were not independent prognosticators. Furthermore, RA conduit strain identified low- and high-risk groups within patients with reduced RV systolic function (p = 0.019 on log rank testing). Conclusions: RA impairment is a distinct feature and independent risk factor in patients following AMI and can be easily assessed using CMR-FT-derived quantification of RA strain

    Comprehensive multimodality characterization of hemodynamically significant and non-significant coronary lesions using invasive and noninvasive measures

    Get PDF
    Background There is limited knowledge about morphological molecular-imaging-derived parameters to further characterize hemodynamically relevant coronary lesions. Objective The aim of this study was to describe and differentiate specific parameters between hemodynamically significant and non-significant coronary lesions using various invasive and non-invasive measures. Methods This clinical study analyzed patients with symptoms suggestive of coronary artery disease (CAD) who underwent native T1-weighted CMR and gadofosveset-enhanced CMR as well as invasive coronary angiography. OCT of the culprit vessel to determine the plaque type was performed in a subset of patients. Functional relevance of all lesions was examined using quantitative flow reserve (QFR-angiography). Hemodynamically significant lesions were defined as lesions with a QFR <0.8. Signal intensity (contrast-to-noise ratios; CNRs) on native T1-weighted CMR and gadofosveset-enhanced CMR was defined as a measure for intraplaque hemorrhage and endothelial permeability, respectively. Results Overall 29 coronary segments from 14 patients were examined. Segments containing lesions with a QFR 0.8; n = 19) (5.32 (4.47–7.02) vs. 2.42 (1.04–5.11); p = 0.042). No differences in signal enhancement were seen on native T1-weighted CMR (2.2 (0.68–6.75) vs. 2.09 (0.91–6.57), p = 0.412). 66.7% (4 out of 6) of all vulnerable plaque and 33.3% (2 out of 6) of all non-vulnerable plaque (fibroatheroma) as assessed by OCT were hemodynamically significant lesions. Conclusion The findings of this pilot study suggest that signal enhancement on albumin-binding probe-enhanced CMR but not on T1-weighted CMR is associated with hemodynamically relevant coronary lesion

    Green Fluorescent Protein (GFP) Color Reporter Gene Visualizes Parvovirus B19 Non-Structural Segment 1 (NS1) Transfected Endothelial Modification

    Get PDF
    Background: Human Parvovirus B19 (PVB19) has been associated with myocarditis putative due to endothelial infection. Whether PVB19 infects endothelial cells and causes a modification of endothelial function and inflammation and, thus, disturbance of microcirculation has not been elucidated and could not be visualized so far. Methods and Findings: To examine the PVB19-induced endothelial modification, we used green fluorescent protein (GFP) color reporter gene in the non-structural segment 1 (NS1) of PVB19. NS1-GFP-PVB19 or GFP plasmid as control were transfected in an endothelial-like cell line (ECV304). The endothelial surface expression of intercellular-adhesion molecule-1 (CD54/ICAM-1) and extracellular matrix metalloproteinase inducer (EMMPRIN/CD147) were evaluated by flow cytometry after NS-1-GFP or control-GFP transfection. To evaluate platelet adhesion on NS-1 transfected ECs, we performed a dynamic adhesion assay (flow chamber). NS-1 transfection causes endothelial activation and enhanced expression of ICAM-1 (CD54: mean±standard deviation: NS1-GFP vs. control-GFP: 85.3±11.2 vs. 61.6±8.1; P<0.05) and induces endothelial expression of EMMPRIN/CD147 (CD147: mean±SEM: NS1-GFP vs. control-GFP: 114±15.3 vs. 80±0.91; P<0.05) compared to control-GFP transfected cells. Dynamic adhesion assays showed that adhesion of platelets is significantly enhanced on NS1 transfected ECs when compared to control-GFP (P<0.05). The transfection of ECs was verified simultaneously through flow cytometry, immunofluorescence microscopy and polymerase chain reaction (PCR) analysis. Conclusions: GFP color reporter gene shows transfection of ECs and may help to visualize NS1-PVB19 induced endothelial activation and platelet adhesion as well as an enhanced monocyte adhesion directly, providing in vitro evidence of possible microcirculatory dysfunction in PVB19-induced myocarditis and, thus, myocardial tissue damage
    • …
    corecore