15 research outputs found

    Association of Structural Magnetic Resonance Imaging Measures With Psychosis Onset in Individuals at Clinical High Risk for Developing Psychosis:An ENIGMA Working Group Mega-analysis

    Get PDF
    IMPORTANCE The ENIGMA clinical high risk (CHR) for psychosis initiative, the largest pooled neuroimaging sample of individuals at CHR to date, aims to discover robust neurobiological markers of psychosis risk.OBJECTIVE To investigate baseline structural neuroimaging differences between individuals at CHR and healthy controls as well as between participants at CHR who later developed a psychotic disorder (CHR-PS+) and those who did not (CHR-PS-).DESIGN, SETTING, AND PARTICIPANTS In this case-control study, baseline T1-weighted magnetic resonance imaging (MRI) data were pooled from 31 international sites participating in the ENIGMA Clinical High Risk for Psychosis Working Group. CHR status was assessed using the Comprehensive Assessment of At-Risk Mental States or Structured Interview for Prodromal Syndromes. MRI scans were processed using harmonized protocols and analyzed within a mega-analysis and meta-analysis framework from January to October 2020.MAIN OUTCOMES AND MEASURES Measures of regional cortical thickness (CT), surface area, and subcortical volumes were extracted from T1-weighted MRI scans. Independent variables were group (CHR group vs control group) and conversion status (CHR-PS+ group vs CHR-PS- group vs control group).RESULTS Of the 3169 included participants, 1428 (45.1%) were female, and the mean (SD; range) age was 21.1 (4.9; 9.5-39.9) years. This study included 1792 individuals at CHR and 1377 healthy controls. Using longitudinal clinical information, 253 in the CHR-PS+ group, 1234 in the CHR-PS- group, and 305 at CHR without follow-up data were identified. Compared with healthy controls, individuals at CHR exhibited widespread lower CT measures (mean [range] Cohen d = -0.13 [-0.17 to -0.09]), but not surface area or subcortical volume. Lower CT measures in the fusiform, superior temporal, and paracentral regions were associated with psychosis conversion (mean Cohen d = -0.22; 95% CI, -0.35 to 0.10). Among healthy controls, compared with those in the CHR-PS+ group, age showed a stronger negative association with left fusiform CT measures (F = 9.8; P < .001; q < .001) and left paracentral CT measures (F = 5.9; P = .005; q = .02). Effect sizes representing lower CT associated with psychosis conversion resembled patterns of CT differences observed in ENIGMA studies of schizophrenia (rho = 0.35; 95% CI, 0.12 to 0.55; P = .004) and individuals with 22q11.2 microdeletion syndrome and a psychotic disorder diagnosis (rho = 0.43; 95% CI, 0.20 to 0.61; P = .001).CONCLUSIONS AND RELEVANCE This study provides evidence for widespread subtle, lower CT measures in individuals at CHR. The pattern of CT measure differences in those in the CHR-PS+ group was similar to those reported in other large-scale investigations of psychosis. Additionally, a subset of these regions displayed abnormal age associations. Widespread disruptions in CT coupled with abnormal age associations in those at CHR may point to disruptions in postnatal brain developmental processes.Question How are brain morphometric features associated with later psychosis conversion in individuals at clinical high risk (CHR) for developing psychosis?Findings In this case-control study including 3169 participants, lower cortical thickness, but not cortical surface area or subcortical volume, was more pronounced in individuals at CHR in a manner highly consistent with thinner cortex in individuals with established psychosis. Regions that displayed lower cortical thickness in individuals at CHR who later developed a psychotic disorder additionally displayed abnormal associations with age.Meaning In this study, CHR status and later transition to psychosis was robustly associated with lower cortical thickness; abnormal age associations and specificity to cortical thickness may point to aberrant postnatal brain development in individuals at CHR, including pruning and myelination.This case-control study investigates baseline structural magnetic resonance imaging (MRI) differences between individuals at clinical high risk and healthy controls as well as between participants at clinical high risk who later developed a psychotic disorder and those who did not

    Adaptive Boosting for Transfer Learning Using Dynamic Updates

    No full text

    Heterogeneous Domain Adaptation Using Linear Kernel

    No full text

    The Effects of Antipsychotics on the Brain::What Have We Learnt from Structural Imaging of Schizophrenia? - A Systematic Review

    Get PDF
    Despite a large number of neuroimaging studies in schizophrenia reporting subtle brain abnormalities, we do not know to what extent such abnormalities reflect the effects of antipsychotic treatment on brain structure. We therefore systematically reviewed cross-sectional and follow-up structural brain imaging studies of patients with schizophrenia treated with antipsychotics. 30 magnetic resonance imaging (MRI) studies were identified, 24 of them being longitudinal and six cross-sectional structural imaging studies. In patients with schizophrenia treated with antipsychotics, reduced gray matter volume was described, particularly in the frontal and temporal lobes. Structural neuroimaging studies indicate that treatment with typical as well as atypical antipsychotics may affect regional gray matter (GM) volume. In particular, typical antipsychotics led to increased gray matter volume of the basal ganglia, while atypical antipsychotics reversed this effect after switching. Atypical antipsychotics, however, seem to have no effect on basal ganglia structure

    Relevance of spinal cord abnormalities to clinical disability in multiple sclerosis: MR imaging findings in a large cohort of patients

    No full text
    Purpose To determine whether spinal cord atrophy differs among disease subtypes in multiple sclerosis (MS) and whether it offers diagnostic and clinical correlative information beyond that provided by other magnetic resonance (MR) imaging markers. Materials and Methods The institutional review board approved the study; all subjects gave written informed consent. Upper cervical cord cross-sectional area (UCCA), brain and spinal cord lesion loads, and brain atrophy were measured in 440 patients with MS (311 with relapsing-remitting [RR] MS, 92 with secondary-progressive [SP] MS, and 37 with primary-progressive [PP] MS) studied in two centers. Disability was scored with the Expanded Disability Status Scale (EDSS), the timed 25-foot walk test (TWT), and the nine-hole peg test. UCCA was compared between groups with the Mann-Whitney U test. Correlations were assessed with the Spearman ρ test. Multivariate associations between UCCA and clinical and other MR imaging parameters, including number of hypointense brain lesions on T1-weighted MR images, presence of diffuse abnormalities, and number of involved segments in the spinal cord, were assessed by using multiple linear regression, adjusted for study center site. Results The UCCA in patients with SP MS (median, 79 mm2; interquartile range, 72.4–84.9 mm2) and PP MS (median, 77.3 mm2; interquartile range, 69–82.5 mm2) was significantly smaller (P < .001) than that in patients with RR MS (median, 84 mm2; interquartile range, 78.7–89.3 mm2). UCCA was inversely correlated with EDSS score, TWT, and nine-hole peg test findings (ρ ≀ −0.29, P < .001 for all comparisons). UCCA, number of hypointense brain lesions on T1-weighted MR images, presence of diffuse abnormalities, and number of involved segments in the spinal cord were found to be significant explanatory factors for clinical disability (R2 = 0.564). The UCCA and the number of hypointense brain lesions on T1-weighted images were the strongest MR imaging parameters for explaining physical disability, as measured with the EDSS. Conclusion Spinal cord abnormalities have a strong effect on clinical disability in MS. MR imaging–derived UCCA was found to be the most significant spinal cord parameter for explaining EDSS score

    A multivariate neuromonitoring approach to neuroplasticity-based computerized cognitive training in recent onset psychosis

    Get PDF
    Two decades of studies suggest that computerized cognitive training (CCT) has an effect on cognitive improvement and the restoration of brain activity. Nevertheless, individual response to CCT remains heterogenous, and the predictive potential of neuroimaging in gauging response to CCT remains unknown. We employed multivariate pattern analysis (MVPA) on whole-brain resting-state functional connectivity (rsFC) to (neuro)monitor clinical outcome defined as psychosis-likeness change after 10-hours of CCT in recent onset psychosis (ROP) patients. Additionally, we investigated if sensory processing (SP) change during CCT is associated with individual psychosis-likeness change and cognitive gains after CCT. 26 ROP patients were divided into maintainers and improvers based on their SP change during CCT. A support vector machine (SVM) classifier separating 56 healthy controls (HC) from 35 ROP patients using rsFC (balanced accuracy of 65.5%, P\u2009&lt;\u20090.01) was built in an independent sample to create a naturalistic model representing the HC-ROP hyperplane. This model was out-of-sample cross-validated in the ROP patients from the CCT trial to assess associations between rsFC pattern change, cognitive gains and SP during CCT. Patients with intact SP threshold at baseline showed improved attention despite psychosis status on the SVM hyperplane at follow-up (p\u2009&lt;\u20090.05). Contrarily, the attentional gains occurred in the ROP patients who showed impaired SP at baseline only if rsfMRI diagnosis status shifted to the healthy-like side of the SVM continuum. Our results reveal the utility of MVPA for elucidating treatment response neuromarkers based on rsFC-SP change and pave the road to more personalized interventions
    corecore