121 research outputs found

    Fighting the curse of sparsity: probabilistic sensitivity measures from cumulative distribution functions

    Get PDF
    Quantitative models support investigators in several risk analysis applications. The calculation of sensitivity measures is an integral part of this analysis. However, it becomes a computationally challenging task, especially when the number of model inputs is large and the model output is spread over orders of magnitude. We introduce and test a new method for the estimation of global sensitivity measures. The new method relies on the intuition of exploiting the empirical cumulative distribution function of the simulator output. This choice allows the estimators of global sensitivity measures to be based on numbers between 0 and 1, thus fighting the curse of sparsity. For density-based sensitivity measures, we devise an approach based on moving averages that bypasses kernel-density estimation. We compare the new method to approaches for calculating popular risk analysis global sensitivity measures as well as to approaches for computing dependence measures gathering increasing interest in the machine learning and statistics literature (the Hilbert–Schmidt independence criterion and distance covariance). The comparison involves also the number of operations needed to obtain the estimates, an aspect often neglected in global sensitivity studies. We let the estimators undergo several tests, first with the wing-weight test case, then with a computationally challenging code with up to k = 30, 000 inputs, and finally with the traditional Level E benchmark code

    Computing Shapley Effects for Sensitivity Analysis

    Full text link
    Shapley effects are attracting increasing attention as sensitivity measures. When the value function is the conditional variance, they account for the individual and higher order effects of a model input. They are also well defined under model input dependence. However, one of the issues associated with their use is computational cost. We present a new algorithm that offers major improvements for the computation of Shapley effects, reducing computational burden by several orders of magnitude (from k!kk!\cdot k to 2k2^k, where kk is the number of inputs) with respect to currently available implementations. The algorithm works in the presence of input dependencies. The algorithm also makes it possible to estimate all generalized (Shapley-Owen) effects for interactions.Comment: 16 pages, 5 figures, 3 tables, 2 algorithm

    Invariant methods for an ensemble-based sensitivity analysis of a passive containment cooling system of an AP1000 nuclear power plant

    Get PDF
    open4noSensitivity Analysis (SA) is performed to gain fundamental insights on a system behavior that is usually reproduced by a model and to identify the most relevant input variables whose variations affect the system model functional response. For the reliability analysis of passive safety systems of Nuclear Power Plants (NPPs), models are Best Estimate (BE) Thermal Hydraulic (TH) codes, that predict the system functional response in normal and accidental conditions and, in this paper, an ensemble of three alternative invariant SA methods is innovatively set up for a SA on the TH code input variables. The ensemble aggregates the input variables raking orders provided by Pearson correlation ratio, Delta method and Beta method. The capability of the ensemble is shown on a BE-TH code of the Passive Containment Cooling System (PCCS) of an Advanced Pressurized water reactor AP1000, during a Loss Of Coolant Accident (LOCA), whose output probability density function (pdf) is approximated by a Finite Mixture Model (FMM), on the basis of a limited number of simulations.Di Maio, Francesco; Nicola, Giancarlo; Borgonovo, Emanuele; Zio, EnricoDI MAIO, Francesco; Nicola, Giancarlo; Borgonovo, Emanuele; Zio, Enric

    Are the results of the groundwater model robust?

    Get PDF
    De Graaf et al. (2019) suggest that groundwater pumping will bring 42--79\% of worldwide watersheds close to environmental exhaustion by 2050. We are skeptical of these figures due to several non-unique assumptions behind the calculation of irrigation water demands and the perfunctory exploration of the model's uncertainty space. Their sensitivity analysis reveals a widespread lack of elementary concepts of design of experiments among modellers, and can not be taken as a proof that their conclusions are robust.Comment: Comment on the paper by De Graaf et al. 2019. Environmental flow limits to global groundwater pumping. Nature 574 (7776), 90-9

    Sensitivity analysis of agent-based models: a new protocol

    Get PDF
    Agent-based models (ABMs) are increasingly used in the management sciences. Though useful, ABMs are often critiqued: it is hard to discern why they produce the results they do and whether other assumptions would yield similar results. To help researchers address such critiques, we propose a systematic approach to conducting sensitivity analyses of ABMs. Our approach deals with a feature that can complicate sensitivity analyses: most ABMs include important non-parametric elements, while most sensitivity analysis methods are designed for parametric elements only. The approach moves from charting out the elements of an ABM through identifying the goal of the sensitivity analysis to specifying a method for the analysis. We focus on four common goals of sensitivity analysis: determining whether results are robust, which elements have the greatest impact on outcomes, how elements interact to shape outcomes, and which direction outcomes move when elements change. For the first three goals, we suggest a combination of randomized finite change indices calculation through a factorial design. For direction of change, we propose a modification of individual conditional expectation (ICE) plots to account for the stochastic nature of the ABM response. We illustrate our approach using the Garbage Can Model, a classic ABM that examines how organizations make decisions

    Sensitivity analysis of agent-based models: a new protocol

    Get PDF
    Agent-based models (ABMs) are increasingly used in the management sciences. Though useful, ABMs are often critiqued: it is hard to discern why they produce the results they do and whether other assumptions would yield similar results. To help researchers address such critiques, we propose a systematic approach to conducting sensitivity analyses of ABMs. Our approach deals with a feature that can complicate sensitivity analyses: most ABMs include important non-parametric elements, while most sensitivity analysis methods are designed for parametric elements only. The approach moves from charting out the elements of an ABM through identifying the goal of the sensitivity analysis to specifying a method for the analysis. We focus on four common goals of sensitivity analysis: determining whether results are robust, which elements have the greatest impact on outcomes, how elements interact to shape outcomes, and which direction outcomes move when elements change. For the first three goals, we suggest a combination of randomized finite change indices calculation through a factorial design. For direction of change, we propose a modification of individual conditional expectation (ICE) plots to account for the stochastic nature of the ABM response. We illustrate our approach using the Garbage Can Model, a classic ABM that examines how organizations make decisions

    Improving the reliability of cohesion policy databases

    Get PDF
    In this contribution, we present an innovative data-driven model to reconstruct a reliable temporal pattern for time-lagged statistical monetary figures. Our research cuts across several domains regarding the production of robust economic inferences and the bridging of top-down aggregated information from central databases with disaggregated information obtained from local sources or national statistical offices. Our test bed case study is the European Regional Development Fund (ERDF). The application we discuss deals with the reported time lag between the local expenditures of ERDF by beneficiaries in Italian regions and the corresponding payments reported in the European Commission database. Our model reconstructs the timing of these local expenditures by back-dating the observed European Commission reimbursements. The inferred estimates are then validated against the expenditures reported from the Italian National Managing Authorities (NMAs) in terms of cumulative monetary difference. The lower cumulative yearly distance of our modelled expenditures compared to the official European Commission payments confirms the robustness of our model. Using sensitivity analysis, we also analyse the relative importance of the modelling parameters on the cumulative distance between the modelled and reported expenditures. The parameters with the greatest influence on the uncertainty of this distance are the following: first, how the non-clearly regionalised expenditures are attributed to individual regions; and second, the number of backward years that the residuals of the yearly payments are spread onto. In general, the distance between the modelled and reported expenditures can be further reduced by fixing these parameters. However, the gain is only marginal for some regions. The present study paves the way for modelling exercises that are aimed at more reliable estimates of the expenditures on the ground by the ultimate beneficiaries of European funds. Additionally, the output databases can contribute to enhancing the reliability of econometric studies on the effectiveness of European Union (EU) funds

    Feature importance measures to dissect the role of sub-basins in shaping the catchment hydrological response: a proof of concept

    Get PDF
    Understanding the response of a catchment is a crucial problem in hydrology, with a variety of practical and theoretical implications. Dissecting the role of sub-basins is helpful both for advancing current knowledge of physical processes and for improving the implementation of simulation or forecast models. In this context, recent advancements in sensitivity analysis tools could be worthwhile for bringing out hidden dynamics otherwise not easy to distinguish in complex data driven investigations. In the present work seven feature importance measures are described and tested in a specific and simplified proof of concept case study. In practice, simulated runoff time series are generated for a watershed and its inner 15 sub-basins. A machine learning tool is calibrated using the sub-basins time series for forecasting the watershed runoff. Importance measures are applied on such synthetic hydrological scenario with the aim to investigate the role of each sub-basin in shaping the overall catchment response. This proof of concept offers a simplified representation of the complex dynamics of catchment response. The interesting result is that the discharge at the catchment outlet depends mainly on 3 sub-basins that are consistently identified by alternative sensitivity measures. The proposed approach can be extended to real applications, providing useful insights on the role of each sub-basin also analyzing more complex scenarios
    corecore