664 research outputs found
Introducing CatOracle: Corpus-based concatenative improvisation with the Audio Oracle algorithm
CATORACLE responds to the need to join high-level control of audio timbre with the organization of musical form in time. It is inspired by two powerful existing tools: CataRT for corpus-based concatenative synthesis based on the MUBU for MAX library, and PYORACLE for computer improvisation, combining for the first time audio descriptor analysis and learning and generation of musical structures. Harnessing a user-defined list of audio fea- tures, live or prerecorded audio is analyzed to construct an “Audio Oracle” as a basis for improvisation. CatOracle also extends features of classic concatenative synthesis to include live interactive audio mosaicking and score-based transcription using the BACH library for MAX. The project suggests applications not only to live performance of written and improvised electroacoustic music, but also computer-assisted composition and musical analysis
European green policy announcements and sectoral stock returns
To fulfill the Paris Agreement commitments and stimulated by an unprecedented amount of public resources put in place to recover from the COVID-induced recession, European governments have recently announced sizable green policy plans. In this paper, we examine the behavior of green and brown portfolios around green policy-related announcements (GPAs) made by major European governments in 2020 via a standard event study analysis and the use of returns of stocks listed in the “STOXX 100 All Europe”. Our main empirical findings indicate the presence of positive cumulative abnormal returns (CARs) both in the green and brown sectors following GPAs. However, the estimated positive sentiment effect is stronger in the former sector. A size effect in terms of the amount of resources announced to be allocated for a specific category of policy is also observed. We find that the observed positive sentiment is mainly driven by announcements on climate change mitigation-related policies, which account for 70% of the total allocated funds. At the sector level, positive and significant CARs due to GPAs are found in the (i) energy, (ii) financial and (iii) industrial sectors. At the country level, GPAs are found to drive a significant positive sentiment effect in the following European countries: Switzerland, Spain, UK, Ireland and Italy. Sector- and country-level analyses confirm the presence of larger benefits from GPAs among more sustainable portfolios
5.5-7.5 MeV Proton generation by a moderate intensity ultra-short laser interaction with H2O nano-wire targets
We report on the first generation of 5.5-7.5 MeV protons by a moderate
intensity short-pulse laser (4.5 \times 1017 W/cm^2, 50 fsec) interacting with
H2O nano-wires (snow) deposited on a Sapphire substrate. In this setup, the
laser intensity is locally enhanced by the tip of the snow nano-wire, leading
to high spatial gradients. Accordingly, the plasma near the tip is subject to
enhanced ponderomotive potential, and confined charge separation is obtained.
Electrostatic fields of extremely high intensities are produced over the short
scale length, and protons are accelerated to MeV-level energies.Comment: submitted to PRL, under press embargo. 6 figure
The Ammount of Interstellar Carbon Locked in Solid Hydrogenated Amorphous Carbon
We review the literature and present new experimental data to determine the
amount of carbon likely to be locked in form of solid hydrogenated amorphous
carbon (HAC) grains. We conclude on the basis of a thorough analysis of the
intrinsic strength of the C-H stretching band at 3.4 micron that between 10 and
80 ppM H of carbon is in the form of HAC grains. We show that it is necessary
to know the level of hydrogenation (H/C) of the interstellar HAC to determine
more precisely the amount of carbon it ties up. We present optical constants,
photoluminescence spectroscopy, and IR absorption spectroscopy for a particular
HAC sample that is shown to have a 3.4 micron absorption feature that is
quantatively consistent with that observed in the diffuse interstellar medium.Comment: This paper is 14 pages long with 5 figures and will appear in the 1
December 1999 issue of Ap
Universality in movie rating distributions
In this paper histograms of user ratings for movies (1,...,10) are analysed.
The evolving stabilised shapes of histograms follow the rule that all are
either double- or triple-peaked. Moreover, at most one peak can be on the
central bins 2,...,9 and the distribution in these bins looks smooth
`Gaussian-like' while changes at the extremes (1 and 10) often look abrupt. It
is shown that this is well approximated under the assumption that histograms
are confined and discretised probability density functions of L\'evy skew
alpha-stable distributions. These distributions are the only stable
distributions which could emerge due to a generalized central limit theorem
from averaging of various independent random avriables as which one can see the
initial opinions of users. Averaging is also an appropriate assumption about
the social process which underlies the process of continuous opinion formation.
Surprisingly, not the normal distribution achieves the best fit over histograms
obseved on the web, but distributions with fat tails which decay as power-laws
with exponent -(1+alpha) (alpha=4/3). The scale and skewness parameters of the
Levy skew alpha-stable distributions seem to depend on the deviation from an
average movie (with mean about 7.6). The histogram of such an average movie has
no skewness and is the most narrow one. If a movie deviates from average the
distribution gets broader and skew. The skewness pronounces the deviation. This
is used to construct a one parameter fit which gives some evidence of
universality in processes of continuous opinion dynamics about taste.Comment: 8 pages, 5 figures, accepted for publicatio
Development of an Interpretive Simulation Tool for the Proton Radiography Technique
Proton radiography is a useful diagnostic of high energy density (HED)
plasmas under active theoretical and experimental development. In this paper we
describe a new simulation tool that interacts realistic laser-driven point-like
proton sources with three dimensional electromagnetic fields of arbitrary
strength and structure and synthesizes the associated high resolution proton
radiograph. The present tool's numerical approach captures all relevant physics
effects, including effects related to the formation of caustics.
Electromagnetic fields can be imported from PIC or hydrodynamic codes in a
streamlined fashion, and a library of electromagnetic field `primitives' is
also provided. This latter capability allows users to add a primitive, modify
the field strength, rotate a primitive, and so on, while quickly generating a
high resolution radiograph at each step. In this way, our tool enables the user
to deconstruct features in a radiograph and interpret them in connection to
specific underlying electromagnetic field elements. We show an example
application of the tool in connection to experimental observations of the
Weibel instability in counterstreaming plasmas, using particles
generated from a realistic laser-driven point-like proton source, imaging
fields which cover volumes of mm. Insights derived from this
application show that the tool can support understanding of HED plasmas.Comment: Figures and tables related to the Appendix are included in the
published journal articl
High volume fabrication of laser targets using MEMS techniques
The latest techniques for the fabrication of high power laser targets, using processes developed for the manufacture of Micro-Electro-Mechanical System (MEMS) devices are discussed. These laser targets are designed to meet the needs of the increased shot numbers that are available in the latest design of laser facilities. Traditionally laser targets have been fabricated using conventional machining or coarse etching processes and have been produced in quantities of 10s to low 100s. Such targets can be used for high complexity experiments such as Inertial Fusion Energy (IFE) studies and can have many complex components that need assembling and characterisation with high precision. Using the techniques that are common to MEMS devices and integrating these with an existing target fabrication capability we are able to manufacture and deliver targets to these systems. It also enables us to manufacture novel targets that have not been possible using other techniques. In addition, developments in the positioning systems that are required to deliver these targets to the laser focus are also required and a system to deliver the target to a focus of an F2 beam at 0.1Hz is discussed
Investigating particle acceleration dynamics in interpenetrating magnetized collisionless super-critical shocks
Colliding collisionless shocks appear in a great variety of astrophysical
phenomena and are thought to be possible sources of particle acceleration in
the Universe. We have previously investigated particle acceleration induced by
single super-critical shocks (whose magnetosonic Mach number is higher than the
critical value of 2.7) (Yao et al. 2021, 2022), as well as the collision of two
sub-critical shocks (Fazzini et al. 2022). Here, we propose to make
measurements of accelerated particles from interpenetrating super-critical
shocks to observe the ''phase-locking effect'' (Fazzini et al. 2022) from such
an event. This effect is predicted to significantly boost the energy spectrum
of the energized ions compared to a single supercritical collisionless shock.
We thus anticipate that the results obtained in the proposed experiment could
have a significant impact on our understanding of one type of primary source
(acceleration of thermal ions as opposed to secondary acceleration mechanisms
of already energetic ions) of ion energization of particles in the Universe
Effect of interchain separation on the photoinduced absorption spectra of polycarbazolyldiacetylenes
The photoinduced absorption spectra of a novel polycarbazolyldiacetylene with long aliphatic chains on the carbazolyl side groups are measured and compared with those of the unsubstituted polyDCHD. The two polymers in the blue form exhibit very similar electronic absorption spectra and Raman frequencies. This fact indicates that the conjugation length of the polydiacetylene backbone is not too affected by the long substituents. In contrast, the near steady-state photoinduced absorption spectra show that different photogeneration mechanisms are involved in the two polymers. This result can be ascribed to the role played by the interchain distance in the dynamics of the relaxation processes in polydiacetylenes
- …