836 research outputs found

    Control of fast electron propagation in foam target by high-Z doping

    Full text link
    The influence of high-Z dopant (Bromine) in low-Z foam (polystyrene) target on laser-driven fast electron propagation is studied by the 3D hybrid particle-in-cell (PIC)/fluid code HEETS.It is found that the fast electrons are better confined in doped targets due to the increasing resistivity of the target, which induces a stronger resistive magnetic field which acts to collimate the fast electron propagation.The energy deposition of fast electrons into the background target is increased slightly in the doped target, which is beneficial for applications requiring long distance propagation of fast electrons, such as fast ignition

    Elaboração de silagem ácida de vísceras de surubin (Pseudoplatystoma sp.).

    Get PDF
    bitstream/item/62557/1/CT201118-1.pd

    Shocks in unmagnetized plasma with a shear flow: Stability and magnetic field generation

    Get PDF
    A pair of curved shocks in a collisionless plasma is examined with a two-dimensional particle-in-cell (PIC) simulation. The shocks are created by the collision of two electron-ion clouds at a speed that exceeds everywhere the threshold speed for shock formation. A variation of the collision speed along the initially planar collision boundary, which is comparable to the ion acoustic speed, yields a curvature of the shock that increases with time. The spatially varying Mach number of the shocks results in a variation of the downstream density in the direction along the shock boundary. This variation is eventually equilibrated by the thermal diffusion of ions. The pair of shocks is stable for tens of inverse ion plasma frequencies. The angle between the mean flow velocity vector of the inflowing upstream plasma and the shock's electrostatic field increases steadily during this time. The disalignment of both vectors gives rise to a rotational electron flow, which yields the growth of magnetic field patches that are coherent over tens of electron skin depths.Comment: 10 pages, 10 figures accepted for publication in Physics of Plasma

    Election turnout statistics in many countries: similarities, differences, and a diffusive field model for decision-making

    Get PDF
    We study in details the turnout rate statistics for 77 elections in 11 different countries. We show that the empirical results established in a previous paper for French elections appear to hold much more generally. We find in particular that the spatial correlation of turnout rates decay logarithmically with distance in all cases. This result is quantitatively reproduced by a decision model that assumes that each voter makes his mind as a result of three influence terms: one totally idiosyncratic component, one city-specific term with short-ranged fluctuations in space, and one long-ranged correlated field which propagates diffusively in space. A detailed analysis reveals several interesting features: for example, different countries have different degrees of local heterogeneities and seem to be characterized by a different propensity for individuals to conform to the cultural norm. We furthermore find clear signs of herding (i.e. strongly correlated decisions at the individual level) in some countries, but not in others.Comment: 15 pages, 9 figures, 7 table

    Multiscaled Cross-Correlation Dynamics in Financial Time-Series

    Get PDF
    The cross correlation matrix between equities comprises multiple interactions between traders with varying strategies and time horizons. In this paper, we use the Maximum Overlap Discrete Wavelet Transform to calculate correlation matrices over different timescales and then explore the eigenvalue spectrum over sliding time windows. The dynamics of the eigenvalue spectrum at different times and scales provides insight into the interactions between the numerous constituents involved. Eigenvalue dynamics are examined for both medium and high-frequency equity returns, with the associated correlation structure shown to be dependent on both time and scale. Additionally, the Epps effect is established using this multivariate method and analyzed at longer scales than previously studied. A partition of the eigenvalue time-series demonstrates, at very short scales, the emergence of negative returns when the largest eigenvalue is greatest. Finally, a portfolio optimization shows the importance of timescale information in the context of risk management

    Laser-driven collimated tens-GeV monoenergetic protons from mass-limited target plus preformed channel

    Get PDF
    Proton acceleration by ultra-intense laser pulse irradiating a target with cross-section smaller than the laser spot size and connected to a parabolic density channel is investigated. The target splits the laser into two parallel propagating parts, which snowplow the back-side plasma electrons along their paths, creating two adjacent parallel wakes and an intense return current in the gap between them. The radiation-pressure pre-accelerated target protons trapped in the wake fields now undergo acceleration as well as collimation by the quasistatic wake electrostatic and magnetic fields. Particle-in-cell simulations show that stable long-distance acceleration can be realized, and a 30 fs monoenergetic ion beam of >10 GeV peak energy and <2 degrees divergence can be produced by a circularly polarized laser pulse at an intensity of about 10(22) W/cm(2). (C) 2013 American Institute of Physics. [http://dx.doi.org/10.1063/1.4775728]Physics, Fluids & PlasmasSCI(E)EI3ARTICLE1null2

    Ultrashort PW laser pulse interaction with target and ion acceleration

    Get PDF
    We present the experimental results on ion acceleration by petawatt femtosecond laser solid interaction and explore strategies to enhance ion energy. The irradiation of micrometer thick (0.2 - 6.0 micron) Al foils with a virtually unexplored intensity regime (8x10^19 W/cm^2 - 1x10^21 W/cm^2) resulting in ion acceleration along the rear and the front surface target normal direction is investigated. The maximum energy of protons and carbon ions, obtained at optimised laser intensity condition (by varying laser energy or focal spot size), exhibit a rapid intensity scaling as I^0.8 along the rear surface target normal direction and I^0.6 along the front surface target normal direction. It was found that proton energy scales much faster with laser energy rather than the laser focal spot size. Additionally, the ratio of maximum ion energy along the both directions is found to be constant for the broad range of target thickness and laser intensities. A proton flux is strongly dominated in the forward direction at relatively low laser intensities. Increasing the laser intensity results in the gradual increase in the backward proton flux and leads to almost equalisation of ion flux in both directions in the entire energy range. These experimental findings may open new perspectives for applications.Comment: 6 pages, 5 figures, 3rd EAAC worksho

    Recent advances in laser-driven neutron sources

    Get PDF
    Due to the limited number and high cost of large-scale neutron facilities, there has been a growing interest in compact accelerator-driven sources. In this context, several potential schemes of laser-driven neutron sources are being intensively studied employing laser-accelerated electron and ion beams. In addition to the potential of delivering neutron beams with high brilliance, directionality and ultra-short burst duration, a laser-driven neutron source would offer further advantages in terms of cost-effectiveness, compactness and radiation confinement by closed-coupled experiments. Some of the recent advances in this field are discussed, showing improvements in the directionality and flux of the laser-driven neutron beams

    Characterisation of deuterium spectra from laser driven multi-species sources by employing differentially filtered image plate detectors in Thomson spectrometers

    Get PDF
    A novel method for characterising the full spectrum of deuteron ions emitted by laser driven multi-species ion sources is discussed. The procedure is based on using differential filtering over the detector of a Thompson parabola ion spectrometer, which enables discrimination of deuterium ions from heavier ion species with the same charge-to-mass ratio (such as C6+, O8+, etc.). Commonly used Fuji Image plates were used as detectors in the spectrometer, whose absolute response to deuterium ions over a wide range of energies was calibrated by using slotted CR-39 nuclear track detectors. A typical deuterium ion spectrum diagnosed in a recent experimental campaign is presented.Comment: 7 pages, 7 figure
    corecore