13 research outputs found

    Quartzo e zircão como marcadores da evolução magmático-hidrotermal do Granito Antônio Vicente, Suíte Intrusiva Velho Guilherme, Província Carajás

    Get PDF
    Quatro tipos morfológico-texturais de quartzo, informalmente denominados Qz1, Qz2, Qz3 e Qz4, foram identificados nas diferentes fácies do Granito Antônio Vicente, Província Carajás, por meio de imagens de microscopia eletrônica de varredura-catodoluminescência (MEV-CL). Nas rochas menos evoluídas, contendo anfibólio e biotita, dominam cristais anédricos a subédricos bem desenvolvidos, luminescentes e intensamente fraturados (Qz1). Fluidos hidrotermais que percolaram o granito transformaram o quartzo magmático (Qz1) em Qz2 e Qz3 por meio de processos de alteração, dissolução e recristalização, sendo essas transformações muito mais evidentes nas rochas sienograníticas intensamente alteradas. O Qz4 forma cristais médios a grossos, geralmente luminescentes e comparativamente pouco fraturados. Sua ocorrência é restrita às rochas sienograníticas fortemente hidrotermalizadas e aos corpos de greisens, sugerindo o início do processo de greisenização. Nos greisens, dominam cristais de quartzo euédricos médios a grossos, zonados concentricamente e com feições típicas de origem hidrotermal (Qz5). Finos cristais de cassiterita zonada (≤ 100 µm) são comuns e preenchem cavidades nos tipos Qz4 e Qz5. Zircões dominantemente anédricos, corroídos, com os mais elevados conteúdos de Hf e as mais baixas razões Zr/Hf, pertencem às rochas mais evoluídas e alteradas hidrotermalmente e aos corpos de greisens associados, ambos portadores de mineralizações de Sn. Tal fato sugere que a assinatura geoquímica do zircão, em especial a razão Zr/Hf, pode ser utilizada na avaliação preliminar do potencial metalogenético de granitos estaníferos.Four morphological and textural types of quartz, informally labeled Qz1, Qz2, Qz3 and Qz4, were identified in the different facies of the Antônio Vicente Granite, Carajás Province, by scanning electron microscope-cathodoluminescence (SEM-CL) images. In the less evolved rocks, containing amphibole and biotite, well developed anhedral to subhedral, luminescent and intensely fractured crystals dominate, named Qz1. Hydrothermal fluids that percolated the granite modified the magmatic quartz (Qz1) into Qz2 and Qz3 through processes of alteration, dissolution and recrystallization, with these changes much more evident in the intensely altered syenogranite rocks. Qz4 constitute medium-to-coarse grained crystals, usually luminescent and comparatively little fractured. Its occurrence is restricted to strongly hydrotermalized syenogranite rocks and bodies of greisens, suggesting the beginning of the greisenization process. In the greisens, medium-to-coarse grained euhedral, concentrically zoned quartz crystals dominate, with typical features of hydrothermal origin (Qz5). Fine crystals of zoned cassiterite (≤ 100 µm) are common and fill cavities in the types Qz4 and Qz5. Zircon crystals dominantly anhedral, corroded, with the highest contents of Hf and the lower Zr/Hf ratios belong to more evolved and hydrothermally altered rocks and to associated greisens, both carriers of Sn mineralization. This fact suggests that the geochemical signature of zircon, especially Zr/Hf ratio, can be used for the preliminary assessment of metallogenic potential of tin granites

    Interação entre magmas graníticos e a origem de epissienitos potássicos estaníferos do granito Madeira, mina Pitinga, Amazonas

    Get PDF
    O estudo petrográfico de amostras da zona de contato entre as fácies albita-granito de borda e feldspato alcalino-granito hipersolvus porfirítico, na borda oeste do plúton Madeira, identificou rochas com características texturais e composicionais herdadas das duas fácies. Tal feição é interpretada como um processo de interação entre os dois magmas graníticos, colocados e cristalizados contemporaneamente. Em condições subsolidus, fluidos hidrotermais causaram alteração potássica pervasiva, ou epissienitização, caracterizada pela dissolução de quartzo das fácies graníticas, gerando cavidades e aumentando a permeabilidade das rochas alteradas. Paralelamente, a albita da fácies de borda do albita-granito foi desestabilizada e substituída por microclínio hidrotermal e, nos estágios mais tardios, as cavidades foram preenchidas por quartzo, microclínio, fluorita, hematita, cassiterita, fengita, clorita, pirita, esfalerita, galena e calcopirita. Os epissienitos potássicos são rochas de coloração vermelha escura a marrom, granulação fina a média, ricas em microclínio hidrotermal, apresentando-se ora porosas, ora com cavidades preenchidas por quartzo e sulfetos. A cassiterita das rochas epissienitizadas é mais pura e relativamente mais pobre em Nb do que aquela presente no albita-granito magmático. Os fluidos que desencadearam a epissienitização devem ter sido oxidados, ricos em K, alcalinos e subsaturados em sílica. Propõem-se duas hipóteses para a sua origem: 1) por separação de uma fase fluida a partir do líquido magmático formador do granito hipersolvus; 2) pela ação do mesmo fluido que desencadeou o processo de autometassomatismo do albita-granito de núcleo, gerando sua fácies de borda.The petrographic study in samples from the contact zone between the border albite-rich granite and the porphyritic hypersolvus alkali feldspar granite, in the western border of the Madeira pluton, allowed for the recognition of rocks with inherited textural and mineralogical features of both facies. This is interpreted as resulting from the interaction between two coeval granite magmas, which were simultaneously emplaced in the crust. Later, in subsolidus stage, the action of hydrothermal fluids caused a pervasive potassic metassomatism, identified as episyenitization, that initially caused the quartz dissolution of the granitic rocks, generating vugs and increasing the altered rocks’ permeability. At the same time, the albite of the border albite-rich granite had been dissolved and replaced for microcline, and, in low-temperature hydrothermal stages, cavities were filled by quartz, microcline, fluorite, hematite, cassiterite, phengite, chlorite, pyrite, sphalerite, galena and chalcopyrite. The potassic episyenites are dark red to brown colored, medium to fine grained, microcline-rich, locally porous rocks and commonly with vugs filled with quartz and sulfide. The cassiterite crystals of the episyenitized rocks show almost pure composition and are Nb-poorer than those magmatic ones. The potassic episyenitization may have been triggered by an oxidized, K-rich, alkaline, silica-undersaturated fluid. Two hypotheses have been proposed to its origin: 1) exsolution of a fluid phase from the magmatic liquid associated with hypersolvus granite; 2) the same fluid which caused the autometassomatic alteration of the albite-rich granite core facies

    Alteração hidrotermal e fluidos mineralizantes no alvo Jerimum de Baixo, Campo Mineralizado do Cuiú-Cuiú, Província Aurífera do Tapajós: um estudo baseado em petrografia, inclusões fluidas e química mineral

    Get PDF
    The Jerimum de Baixo gold target is located in the Cuiú-Cuiú goldfield, Tapajós Gold Province, Amazonian Craton. The target is composed by isotropic monzogranitic rocks with Fe-rich biotite, which is slightly-to-strongly altered by hydrothermal fluids. Chloritization, sericitization, sulfidation, silicification and carbonatization are the most important types of hydrothermal alteration. The chloritization is represented by Fe-rich chlorite (chamosite type), that was mostly formed between 261 and 315ºC. White mica takes up fengitic compositions. The mineralization is represented by quartz-rich veinlets with low content of sulfides (pyrite + pyrrhotite ± chalcopyrite ± galena ± sphalerite) in which the gold occurs as freemilling particles and in fractured, brecciaed and altered zones, where gold is associated with pyrrhotite. The petrographic and microthermometric study of fluid inclusions hosted in quartz veinlets defined aqueous-carbonic, carbonic and aqueous fluids. The CO2 bearing inclusions represent the probable mineralizing fluid, and are interpreted as produced by phase separation process (effervescence) between 280 and 380ºC. The aqueous fluids are late to the mineralization and represent posterior and consecutives events of infiltration and mixture with meteoric fluids. Phases separation, modifications in pH conditions and interaction fluid/rock were important mechanisms for the precipitation of gold that took place in the brittle-ductile zone of the continental crust (between 2 and 6 km). The available data set pointed out a metallogenetic affiliation, similar to that of intrusion-related gold deposits, to Jerimum de Baixo.O alvo Jerimum de Baixo está localizado no Campo Mineralizado do Cuiú-Cuiú, região central da Província Aurífera do Tapajós, Cráton Amazônico. O alvo abrange rochas de composição monzogranítica portadoras de biotita rica em Fe, essencialmente isotrópicas e que foram de fraca a fortemente hidrotermalizadas. Cloritização, sericitização, sulfetação, silicificação e carbonatação são os tipos de alteração mais importantes. A clorita hidrotermal é do tipo chamosita e foi formada entre 261 e 315ºC. A mica branca apresenta composição fengítica. A mineralização é representada por vênulas de quartzo com baixo teor de sulfetos (pirita + pirrotita ± calcopirita ± galena ± esfalerita) em que o ouro ocorre livre e em zonas mais fragilizadas e alteradas, geralmente associado à pirrotita. O estudo petrográfico e microtermométrico de inclusões fluidas hospedadas em quartzo de vênulas definiu inclusões aquocarbônicas, carbônicas e aquosas. Os fluidos com CO2 representam o provável fluido mineralizador e foram gerados por processos de separação de fases entre 280 e 380ºC. Uma posterior infiltração e processos de mistura com fluidos meteóricos são indicados para os fluidos aquosos mais tardios. Separação de fases, modificações nas condições do pH e interação fluido/rocha foram os mecanismos importantes para a precipitação do Au, que se deu em nível rúptil-dúctil da crosta (entre 2 e 6 km). O conjunto de dados até aqui disponíveis indicam para o alvo Jerimum de Baixo uma filiação metalogenética similar a de depósitos auríferos relacionados à intrusão

    Greisens e Epi-sienitos potássicos associados ao granito água boa, Pitanga (AM): um estudo dos processos hidrotermais geradores de mineralizações estaníferas

    No full text
    Three stanniferous greisen types were characterized in the western border of Água Boa pluton, Pitinga mine (AM), associated with the rapakivi granite facies: greisen 1 (Gsl), composed mainly by quartz, topaz, brown siderophyllite and sphalerite; greisen 2 (Gs2), composed essentially by quartz, phengite and chlorite; greisen 3 (Gs3), composed of quartz, fluorite and phengite, with minor green siderophyllite. Besides these rocks, a potassic episyenite (EpSK) was identified associated with the Gs2. In spite of the compositional and petrographic differences, all of these hydrothermal rocks derived from a same protholith, a hornblende biotite aikali feldspar granite to syenogranite. The Gsl shows an inner mineralogical zoning defined by topaz or siderophyllite predominance. Along drill cores, the siderophyllite-rich zone occurs near the contact with the greisenized grafite and the topaz-rich zone is situated far from the grafite contact. The brown siderophyllite displays moderated Al contents, and its compositional changes can be explained by Fe+2 substitution for A1+3 and Li in octahedral sites, with a coupled Al+3 substitution for Si+4 in tetrahedral sites. The mineralogical zones in the Gs2 are physicaliy separated in leveis with phengite or chlorite predominance. The mica of Gs2 is a phengite, whose chemical variation is due to substitution of viAl for Fe+2, coupled with Si+4 enrichment. The calculated Li contents in phengites are lesser than those estimated in siderophyllite. The green siderophyllite from Gs3 is VIAl richer and F poorer than Gs1 brown siderophyllite, and the phengite displays two compositional types: an early Fe+2-poor aluminous phengite and a later Fe+2- F-rich one whose chemical variation is similar to that of Gs2 phengite. The chlorite from the three greisen is a Fe-rich daphnite, and its compositional range is due to VIAl substitution for R+2 cations, coupled with Si+2 enrichment. The aluminous chlorite displays higher temperature formation than ferrous one, according to the geothermeter proposed in the literature. The Pitinga greisens were formed by different processes of interaction among three main fluids: (1) low salinity, F-rich, aquo-carbonic fluid, with initial temperatures between 400° -350°C, present during Gsl and Gs3 formation; (2) low salinity aqueous fluid, with a temperature around 300°C, which during a progressive salinity increasing process, originates a moderate to high salinity residual fluid, with temperatures between 200° - 100°C, present during the Gs2 formation and silicification stage of EpSK; (3) low salinity aqueous fluid, with temperatures between 200° - 150°C, which interplayed with the others two fluids in differents grades, contributing to the formation of ali the hydrothermal rocks. The first two fluids has seemingly an orthomagmatic origin while the latter has a surface characteristic (meteoric water?). Moreover, the data suggests that the fluid responsible by the initial stage of the episyenitization process was not registered in the studied samples. These fluids were trapped in pressure conditions around 1 Kbar, representing high crustal levels conditions, similar to that of the stanniferous granites from Pitinga. Both episyenitization and greisenization processes occurred without volume changes in the granitic protholith, and the density differences of the altered rocks were caused by the mass variations along the alteration processes. The greisenization process caused a extensive loss of Na2O and K2O, while SiO2 showed a immobile behaviour in Gsl but was parcially removed in Gs2. The Al2O3 was depleted during the Gs2 formation but added in Gsl. The Fe2O3 (Fe total), Sn, S, volatiles LOl and F were the responsible by the mass increase at greisenization. In the Gsl, the chemical changes in the fiuids were caused by F activity decrease and fO2 increase during cooling. These changes also originated the differentiation between the ZT, in the inner portions of the fratures/conducts, and the ZS, nearest to surrounding gravite. The Gs3 was formed in more oxidizing conditions by F-poorer fiuids than those trapped in the ZS. The dissolution cavities generated during the episyenitization process increased the permeability of the altered rocks, providing an increase of fluid/rock ratios in the EpSK and Gs2 sites. The interaction between aqueous fluid and EpSK feldspar, during the Gs2 formation, caused a continuous salinity increase. The ZF was formed in the early stages of this interaction, at higher temperatures, while the ZC was originated by the more cold and saline, residual fluid. The latter was also trapped in the quartz filling cavities in the EpSK during the later silicification stage. In this way, the greisens and the potassic episyenites were generated from interactions among, at least, three fluids of seemingly independent origin, from a same protholith, in shallow crust conditions. The fO2, F activity and salinity variations, during the hydrothermal system cooling, and the contrast in fluid/rock ratios caused by permeability differences, were very important factors to greisen differentiation. These factors controlled greatly the fluids compositional changes, and caused the cassiterite and sulphides precipitation in the greisens and the Sn- S-enrichment during later greisenization of EpSK.CNPq - Conselho Nacional de Desenvolvimento Científico e TecnológicoNa borda oeste do pluton Água Boa, na mina Pitinga (AM), ocorrem três tipos de greisens estaníferos associados espacialmente à fácies granito rapakivi: greisen 1 (Gs1), constituído principalmente por quartzo, topázio, siderofilita marrom e esfalerita; greisen 2 (Gs2), formado essencialmente por quartzo, fengita e clorita; greisen 3 (Gs3), constituído essencialmente por quartzo, fluorita e fengita, com quantidades subordinadas de siderofilita verde. Além disso, associado ao Gs2, ocorre um epi-sienito potássico (EpSK), formado pela dessilicificação do granito rapakivi. Apesar de suas diferenças composicionais e petrográficas, os greisens e epi-sienitos se formaram a partir do mesmo protólito granítico, um hornblenda-biotita-álcali-feldspato-granito a sienogranito. O Gsl apresenta uma zonação interna definida pela predominância de determinados minerais. Assim, ao longo de um halo de alteração contínuo, a zona rica em siderofilita (ZS) está em contato com o granito greisenizado, enquanto que a zona rica em topázio (ZT) situa-se mais afastada do granito. A siderofilita marrom apresenta teores moderados em AI, e sua variação composicional ocorre pela substituição de Fe+2 por A1+3 e Li nos sítios octaédricos, com geração de vacâncias, e concomitante substituição de A1+3por Si+4nos sítios tetraédricos. No Gs2, as zonas mineralógicas estão separadas espacialmente, em níveis onde predomina a fengita (ZF) ou a clorita (ZC). A fengita apresenta um mecanismo evolutivo em que o viAl é substituído por Fe+2 nos sítios octaédricos, com enriquecimento acoplado de Si+4 às expensas de A1+3 nos sítios tetraédricos. Seus teores de Li calculado são ainda menores do que aqueles estimados para a siderofilita do Gs1. No Gs3, a siderofilita verde é composicionalmente mais rica em VIAl e mais pobre em F do que a siderofilita do Gsl, enquanto que a fengita subdivide-se em dois tipos composicionais: uma fengita mais aluminosa, pobre em Fe+2, e uma mais rica em F e Fe+2, que segue os mesmos trends evolutivos apresentados pela fengita do Gs2. A clorita dos três greisens é extremamente rica em Fe, do tipo dafnita. Na sua estrutura, a substituição de 'JIA' por cátions R+2 causa um aumento na ocupação tetraédrica do Si. As cloritas mais aluminosas apresentam as mais altas temperaturas de formação, segundo os geotermômetros clássicos propostos na literatura. Os greisens são resultantes de diferentes processos de interação entre três fluidos principais: (1) fluido aquo-carbônico de baixa salinidade, rico em F, com temperaturas iniciais entre 400° e 350°C, presente durante a formação do Gs1 e Gs3; (2) fluido aquoso de baixa salinidade, e temperatura ao redor de 300°C e que, ao longo de um processo contínuo de salinização, gera um fluido residual de salinidade moderada a alta, com temperaturas entre 200° e 100°C, presente durante a formação do Gs2 e no estágio de silicificação do EpSK; (3) fluido aquoso de baixa salinidade, com temperaturas entre 2000 e 150°C, e que interagiu com os outros dois fluidos, contribuindo, em diferentes graus, para a formação de praticamente todas as rochas hidrotermais. Os dois primeiros fluidos aparentemente têm origem ortomagmática, enquanto que o último tem características de fluido superficial (meteórico?). Além destes, considera-se que o fluido responsável pelo estágio inicial do processo de epi-sienitização não ficou registrado nas amostras estudadas. Estes fluidos foram aprisionados em condições de pressão ao redor de 1 Kb, compatível com níveis crustais rasos, como parece ser o caso dos granitos estaniferos de Pitinga. Tanto a epi-sienitização quanto a greisenização ocorreram sem mudanças no volume original do granito, enquanto as variações de massa decorrentes das transformações causaram as diferenças nas densidades das rochas alteradas. A greisenização causou uma grande remoção em Na2O e K2O, enquanto que SiO2 permaneceu imóvel no Gsl e foi parcialmente removido no Gs2. O Al2O3 sofreu perdas durante a formação do Gs2, mas foi parcialmente adicionado ao Gsl. Os responsáveis pelo aumento de massa durante a greisenização foram Fe2O3 (Fe total), Sn, S, voláteis (P.F.) e F. No Gsl, a diminuição da atividade do F e o aumento da fO2 durante o resfriamento, causaram mudanças químicas nos fluidos, e a conseqüente diferenciação entre a ZT, nas porções mais internas dos condutos/fraturas, e a ZS, mais próxima do granito encaixante. O Gs3 foi formado sob condições mais oxidantes e por fluidos mais pobres em F do que aqueles aprisionados na ZS. A geração de cavidades de dissolução durante a epi-sienitização aumentou a permeabilidade das rochas alteradas, propiciando o aumento das razões fluido-rocha no sitio de formação do EpSK e Gs2. A interação dos fluidos aquosos com os feldspatos do EpSK, durante a formação do Gs2, causou um aumento contínuo na sua salinidade. A ZF foi formada nos estágios mais precoces desta interação, sob temperaturas relativamente mais altas, enquanto que a ZC é um produto dos fluidos aquosos residuais, mais salinos e mais frios. Estes fluidos residuais também foram aprisionados no quartzo de preenchimento de cavidades no EpSK durante o processo de silicificação tardia. Desta forma, os greisens e epi-sienitos potássicos foram formados pela interação entre, pelo menos, três fluidos de origem aparentemente independente, a partir do mesmo protólito granítico, em condições de crosta rasa. As variações nas condições de fO2, atividade do F e salinidade, durante o resfriamento do sistema hidrotermal, e contrastes nas razões fluido-rocha causadas por diferenças de permeabilidade, foram fatores fundamentais para a diferenciação dos greisens. Estes fatores influenciaram sobremaneira as mudanças composicionais dos fluidos e foram responsáveis pela precipitação de cassiterita e sulfetos nos greisens, e pelo enriquecimento em Sn e S durante a greisenização tardia dos epi-sienitos potássicos

    Variação morfológica e composicional de zircão e suas implicações metalogenéticas: o exemplo das suítes Jamon, serra dos Carajás e Velho Guilherme, Cráton Amazônico

    No full text
    Zircon from granites of the Jamon suite (JS), Serra dos Carajás suite (SCS) and Velho Guilherme suite (VGS) were studied by scanning electron microscope (SEM) through backscattered electron and cathodoluminescence images and energy dispersive spectroscopy (EDS) analyses. Granites and greisens of the VGS have predominantly anhedral zircons that are altered and intensely corroded, are enriched in Hf and have the lowest Zr/Hf ratios of the studied suites. In the granites, these ratios decrease towards the more evolved varieties. Zircons of the JS are euhedral to subhedral, zoned and slightly altered; they are also comparatively depleted in Hf and display the highest Zr/Hf ratios, indicating limited potential for tin-associated mineralization. Zircons from granites of the SCS are subhedral to anhedral, altered and corroded, and show Hf contents and Zr/Hf ratios intermediate to those of the JS and VGS. The granites of the VGS with Sn-, Ta- and W-associated mineralization contain zircons with Zr/Hf ratios varying from 7 to 22. It is concluded that ratios of similar magnitude can be used as a prospecting guide for specialized granites. Zircons from the greisens associated with the Cigano granite of the SCS have average Zr/Hf ratios of approximately 23, but no cassiterite was found in these rocks, indicating that the zircons preserved their magmatic geochemical signature. This study distinguished the three granitic suites in terms of zircon composition and demonstrated the importance of their geochemical signature, especially in terms of their Zr/Hf ratio, in the identification of specialized granites. EDS-SEM analysis can thus be used in a preliminary assessment of the metallogenic potential of tin granites.Zircões de granitos das Suítes Jamon (SJ), Serra dos Carajás (SSC) e Velho Guilherme (SVG) foram estudados em MEV por meio de imagens de elétrons retroespalhados e catodoluminescência e análises pontuais por EDS. Granitos e greisens da SVG apresentam zircões dominantemente anédricos, alterados e intensamente corroídos, enriquecidos em Hf e com as mais baixas razões Zr/Hf, as quais nos granitos tendem a decrescer no sentido das fácies mais evoluídas. Zircões da SJ são euédricos a subédricos, zonados e pouco alterados, comparativamente empobrecidos em Hf e com as mais elevadas razões Zr/Hf, indicando potencial reduzido para geração de mineralização estanífera. Zircões dos granitos da SSC são subédricos a anédricos, alterados e corroídos e com conteúdos de Hf e razões Zr/Hf intermediárias a dos zircões das SJ e SVG. Granitos da SVG com mineralizações de Sn, W e Ta apresentam zircões com razões Zr/Hf entre 7 e 22. Conclui-se que razões desta ordem podem ser utilizadas como guia prospectivo de granitos especializados. Por outro lado, zircões de greisens associados ao Granito Cigano da SSC apresentaram razão Zr/Hf média em torno de 23, porém nenhuma cassiterita foi encontrada nessas rochas. Isto indica que estes zircões preservaram sua assinatura magmática original. O estudo desenvolvido permitiu distinguir as três suítes graníticas em termos de composição de zircão, e mostrou a importância da assinatura geoquímica desse mineral, sobretudo da razão Zr/Hf, na identificação de granitos especializados. Análises de zircões por MEV-EDS podem, portanto, ser utilizadas na avaliação preliminar do potencial metalogenético de granitos estaníferos

    Quartz And Zircon as markers of the magmatic-hydrothermal evolution of the Antônio Vicente Granite, Velho Guilherme Intrusive Suite, Carajás Province

    Get PDF
    Four morphological and textural types of quartz, informally labeled Qz1, Qz2, Qz3 and Qz4, were identified in the different facies of the Antônio Vicente Granite, Carajás Province, by scanning electron microscope-cathodoluminescence (SEM-CL) images. In the less evolved rocks, containing amphibole and biotite, well developed anhedral to subhedral, luminescent and intensely fractured crystals dominate, named Qz1. Hydrothermal fluids that percolated the granite modified the magmatic quartz (Qz1) into Qz2 and Qz3 through processes of alteration, dissolution and recrystallization, with these changes much more evident in the intensely altered syenogranite rocks. Qz4 constitute medium-to-coarse grained crystals, usually luminescent and comparatively little fractured. Its occurrence is restricted to strongly hydrotermalized syenogranite rocks and bodies of greisens, suggesting the beginning of the greisenization process. In the greisens, medium-to-coarse grained euhedral, concentrically zoned quartz crystals dominate, with typical features of hydrothermal origin (Qz5). Fine crystals of zoned cassiterite (≤ 100 µm) are common and fill cavities in the types Qz4 and Qz5. Zircon crystals dominantly anhedral, corroded, with the highest contents of Hf and the lower Zr/Hf ratios belong to more evolved and hydrothermally altered rocks and to associated greisens, both carriers of Sn mineralization. This fact suggests that the geochemical signature of zircon, especially Zr/Hf ratio, can be used for the preliminary assessment of metallogenic potential of tin granites.Quatro tipos morfológico-texturais de quartzo, informalmente denominados Qz1, Qz2, Qz3 e Qz4, foram identificados nas diferentes fácies do Granito Antônio Vicente, Província Carajás, por meio de imagens de microscopia eletrônica de varredura-catodoluminescência (MEV-CL). Nas rochas menos evoluídas, contendo anfibólio e biotita, dominam cristais anédricos a subédricos bem desenvolvidos, luminescentes e intensamente fraturados (Qz1). Fluidos hidrotermais que percolaram o granito transformaram o quartzo magmático (Qz1) em Qz2 e Qz3 por meio de processos de alteração, dissolução e recristalização, sendo essas transformações muito mais evidentes nas rochas sienograníticas intensamente alteradas. O Qz4 forma cristais médios a grossos, geralmente luminescentes e comparativamente pouco fraturados. Sua ocorrência é restrita às rochas sienograníticas fortemente hidrotermalizadas e aos corpos de greisens, sugerindo o início do processo de greisenização. Nos greisens, dominam cristais de quartzo euédricos médios a grossos, zonados concentricamente e com feições típicas de origem hidrotermal (Qz5). Finos cristais de cassiterita zonada (≤ 100 µm) são comuns e preenchem cavidades nos tipos Qz4 e Qz5. Zircões dominantemente anédricos, corroídos, com os mais elevados conteúdos de Hf e as mais baixas razões Zr/Hf, pertencem às rochas mais evoluídas e alteradas hidrotermalmente e aos corpos de greisens associados, ambos portadores de mineralizações de Sn. Tal fato sugere que a assinatura geoquímica do zircão, em especial a razão Zr/Hf, pode ser utilizada na avaliação preliminar do potencial metalogenético de granitos estaníferos

    Mineralogy of the greisens of the Grota Rica area, Água Boa Pluton, Pitinga, Amazonas state

    No full text
    O topázio-álcali-feldspato-granito, fácies mais evoluída do plúton Água Boa, foi afetado por processos de alteração hidrotermal, que culminaram com a formação de greisens e veios de quartzo, principais hospedeiros de mineralizações de Sn e, subordinadamente, Zn. Os greisens foram classificados como quartzo-topázio-siderofilita-greisen, topázio-siderofilita-quartzo-greisen e topázio-quartzo-greisen. São compostos por quartzo, siderofilita e topázio, acompanhados por quantidades variáveis de fluorita, zinnwaldita, esfalerita, cassiterita, zircão, anatásio e, localmente, Ce-monazita, galena, pirita, calcopirita e bismuto nativo. Estudos de química mineral em microssonda eletrônica permitiram identificar três tipos de micas: (1) siderofilita marrom, presente no topázio-granito; (2) siderofilita verde, encontrada nos greisens; (3) zinnwaldita, fracamente colorida, encontrada como coroas finas e descontínuas em torno da siderofilita verde dos greisens, e encontrada também em veios de quartzo. A composição da siderofilita do granito varia com a proximidade dos greisens, mostrando uma evolução de siderofilita siderofilita litinífera, com aumento nos conteúdos de <sup>VI</sup>Al, Li e Si. A siderofilita do greisen foi, por sua vez, parcialmente substituída por zinnwaldita, também com aumento nos teores de <sup>VI</sup>Al, Li e Si. A cassiterita nos greisens forma cristais euédricos a subédricos em contato reto com siderofilita ou como agregados junto com topázio, quartzo e fluorita. Exibe cristais maclados, zonados e com forte pleocroísmo. As composições muito puras e baixos conteúdos de Nb e Ta, indicam formação em condições hidrotermais.ABSTRACT: The topaz-alkali-feldspar-granite, the most evolved facies of the Água Boa pluton, was affected by hydrothermal alteration, represented by greisens and quartz veins, the main host for Sn- and subordinated Zn mineralization. The greisens are classified as quartz-topaz-siderophyllite-greisen, topaz-siderophyllite-greisen and quartz-topaz-quartz-greisen. They are composed essentially of quartz, topaz and siderophyllite, accompanied by variable amounts of fluorite, zinnwaldite, sphalerite, cassiterite, zircon and anatase and locally Ce-monazite, galena, pyrite, chalcopyrite and native bismuth. EMPA studies allowed identifying three types of micas: (1) brown siderophyllite from topaz-granite; (2) the green siderophyllite of greisens and (3) zinnwaldite, weakly colored, found as thin and discontinuous rims around green siderophyllite, and quartz vein. The siderophyllite composition of the granite towards greisens shows an evolution of siderophyllite to Li-siderophyllite with increase of <sup>VI</sup>Al, Li and Si contents. On the other hand, the siderophyllite of the greisen was partially replaced by zinnwaldite, with increase of <sup>VI</sup>Al, Li and Si contents. The cassiterite in the greisens forms euhedral to subeuhedral, twin and zoned crystals, with strong pleochroism. It occurs as aggregates together with topaz, quart and fluorite. The pure composition and the low content of the Nb and Ta of cassiterite indicate hydrothermal conditions
    corecore