247 research outputs found

    The effects of changes in the order of verbal labels and numerical values on children's scores on attitude and rating scales

    Get PDF
    Research with adults has shown that variations in verbal labels and numerical scale values on rating scales can affect the responses given. However, few studies have been conducted with children. The study aimed to examine potential differences in children’s responses to Likert-type rating scales according to their anchor points and scale direction, and to see whether or not such differences were stable over time. 130 British children, aged 9 to 11, completed six sets of Likert-type rating scales, presented in four different ways varying the position of positive labels and numerical values. The results showed, both initially and 8-12 weeks later, that presenting a positive label or a high score on the left of a scale led to significantly higher mean scores than did the other variations. These findings indicate that different arrangements of rating scales can produce different results which has clear implications for the administration of scales with children

    Bolus residue scale: an easy-to-use and reliable videofluoroscopic analysis tool to score bolus residue in patients with dysphagia

    Get PDF
    Background. We aimed to validate an easy-to-use videofluoroscopic analysis tool, the bolus residue scale (BRS), for detection and classification of pharyngeal retention in the valleculae, piriform sinuses, and/or the posterior pharyngeal wall. Methods. 50 randomly selected videofluoroscopic images of 10 mL swallows (recorded in 18 dysphagia patients and 8 controls) were analyzed by 4 experts and 6 nonexpert observers. A score from 1 to 6 was assigned according to the number of structures affected by residue. Inter- and intrarater reliabilities were assessed by calculation of intraclass correlation coefficients (ICCs) for expert and nonexpert observers. Sensitivity, specificity, and interrater agreement were analyzed for different BRS levels. Results. Intrarater reproducibility was almost perfect for experts (mean ICC 0.972) and ranged from substantial to almost perfect for nonexperts (mean ICC 0.835). Interjudge agreement of the experts ranged from substantial to almost perfect (mean ICC 0.780), but interrater reliability of nonexperts ranged from substantial to good (mean 0.719). BRS shows for experts a high specificity and sensitivity and for nonexperts a low sensitivity and high specificity. Conclusions. The BRS is a simple, easy-to-carry-out, and accessible rating scale to locate pharyngeal retention on videofluoroscopic images with a good specificity and reproducibility for observers of different expertise levels.Nathalie Rommel, Charlotte Borgers, Dirk Van Beckevoort, Ann Goeleven, Eddy Dejaeger, and Taher I. Omar

    One size doesn’t fit all: time to revisit patient-reported outcome measures (PROMs) in paediatric ophthalmology?

    Get PDF
    The purpose of this article is to summarise methodological challenges and opportunities in the development and application of patient reported outcome measures (PROMs) for the rare and complex population of children with visually impairing disorders. Following a literature review on development and application of PROMs in children in general, including those with disabilities and or/chronic condition, we identified and discuss here 5 key issues that are specific to children with visual impairment: (1) the conflation between theoretically distinct vision-related constructs and outcomes, (2) the importance of developmentally appropriate approaches to design and application of PROMs, (3) feasibility of standard questionnaire formats and administration for children with different levels of visual impairment, (4) feasibility and nature of self-reporting by visually impaired children, and (5) epidemiological, statistical and ethical considerations. There is an established need for vision-specific age-appropriate PROMs for use in paediatric ophthalmology, but there are significant practical and methodological challenges in developing and applying appropriate measures. Further understanding of the characteristics and needs of visually impaired children as questionnaire respondents is necessary for development of quality PROMs and their meaningful application in clinical practice and research

    Identification of chlamydomonas central core centriolar proteins reveals a role for human WDR90 in ciliogenesis

    Get PDF
    Centrioles are evolutionarily conserved macromolecular structures that are fundamental to form cilia, flagella, and centrosomes. Centrioles are 9-fold symmetrical microtubule-based cylindrical barrels comprising three regions that can be clearly distinguished in the Chlamydomonas reinhardtii organelle: an ∼100-nm-long proximal region harboring a cartwheel; an ∼250-nm-long central core region containing a Y-shaped linker; and an ∼150-nm-long distal region ending at the transitional plate. Despite the discovery of many centriolar components, no protein has been localized specifically to the central core region in Chlamydomonas thus far. Here, combining relative quantitative mass spectrometry and super-resolution microscopy on purified Chlamydomonas centrioles, we identified POB15 and POC16 as two proteins of the central core region, the distribution of which correlates with that of tubulin glutamylation. We demonstrated that POB15 is an inner barrel protein within this region. Moreover, we developed an assay to uncover temporal relationships between centriolar proteins during organelle assembly and thus established that POB15 is recruited after the cartwheel protein CrSAS-6 and before tubulin glutamylation takes place. Furthermore, we discovered that two poc16 mutants exhibit flagellar defects, indicating that POC16 is important for flagellum biogenesis. In addition, we discovered that WDR90, the human homolog of POC16, localizes to a region of human centrioles that we propose is analogous to the central core of Chlamydomonas centrioles. Moreover, we demonstrate that WDR90 is required for ciliogenesis, echoing the findings in Chlamydomonas. Overall, our work provides novel insights into the identity and function of centriolar central core components

    WDR90 is a centriolar microtubule wall protein important for centriole architecture integrity

    Get PDF
    Centrioles are characterized by a nine-fold arrangement of microtubule triplets held together by an inner protein scaffold. These structurally robust organelles experience strenuous cellular processes such as cell division or ciliary beating while performing their function. However, the molecular mechanisms underlying the stability of microtubule triplets, as well as centriole architectural integrity remain poorly understood. Here, using ultrastructure expansion microscopy for nanoscale protein mapping, we reveal that POC16 and its human homolog WDR90 are components of the microtubule wall along the central core region of the centriole. We further found that WDR90 is an evolutionary microtubule associated protein. Finally, we demonstrate that WDR90 depletion impairs the localization of inner scaffold components, leading to centriole structural abnormalities in human cells. Altogether, this work highlights that WDR90 is an evolutionary conserved molecular player participating in centriole architecture integrity.</jats:p

    Rhythm Generation through Period Concatenation in Rat Somatosensory Cortex

    Get PDF
    Rhythmic voltage oscillations resulting from the summed activity of neuronal populations occur in many nervous systems. Contemporary observations suggest that coexistent oscillations interact and, in time, may switch in dominance. We recently reported an example of these interactions recorded from in vitro preparations of rat somatosensory cortex. We found that following an initial interval of coexistent gamma (∼25 ms period) and beta2 (∼40 ms period) rhythms in the superficial and deep cortical layers, respectively, a transition to a synchronous beta1 (∼65 ms period) rhythm in all cortical layers occurred. We proposed that the switch to beta1 activity resulted from the novel mechanism of period concatenation of the faster rhythms: gamma period (25 ms)+beta2 period (40 ms) = beta1 period (65 ms). In this article, we investigate in greater detail the fundamental mechanisms of the beta1 rhythm. To do so we describe additional in vitro experiments that constrain a biologically realistic, yet simplified, computational model of the activity. We use the model to suggest that the dynamic building blocks (or motifs) of the gamma and beta2 rhythms combine to produce a beta1 oscillation that exhibits cross-frequency interactions. Through the combined approach of in vitro experiments and mathematical modeling we isolate the specific components that promote or destroy each rhythm. We propose that mechanisms vital to establishing the beta1 oscillation include strengthened connections between a population of deep layer intrinsically bursting cells and a transition from antidromic to orthodromic spike generation in these cells. We conclude that neural activity in the superficial and deep cortical layers may temporally combine to generate a slower oscillation
    corecore