17 research outputs found

    Inhibition of Intercellular Cytosolic Traffic via Gap Junctions Reinforces Lomustine-Induced Toxicity in Glioblastoma Independent of MGMT Promoter Methylation Status

    No full text
    Glioblastoma is a malignant brain tumor and one of the most lethal cancers in human. Temozolomide constitutes the standard chemotherapeutic agent, but only shows limited efficacy in glioblastoma patients with unmethylated O-6-methylguanine-DNA methyltransferase (MGMT) promoter status. Recently, it has been shown that glioblastoma cells communicate via particular ion-channels—so-called gap junctions. Interestingly, inhibition of these ion channels has been reported to render MGMT promoter-methylated glioblastoma cells more susceptible for a therapy with temozolomide. However, given the percentage of about 65% of glioblastoma patients with an unmethylated MGMT promoter methylation status, this treatment strategy is limited to only a minority of glioblastoma patients. In the present study we show that—in contrast to temozolomide—pharmacological inhibition of intercellular cytosolic traffic via gap junctions reinforces the antitumoral effects of chemotherapeutic agent lomustine, independent of MGMT promoter methylation status. In view of the growing interest of lomustine in glioblastoma first and second line therapy, these findings might provide a clinically-feasible way to profoundly augment chemotherapeutic effects for all glioblastoma patients

    Inhibition of Intercellular Cytosolic Traffic via Gap Junctions Reinforces Lomustine-Induced Toxicity in Glioblastoma Independent of MGMT Promoter Methylation Status

    No full text
    Glioblastoma is a malignant brain tumor and one of the most lethal cancers in human. Temozolomide constitutes the standard chemotherapeutic agent, but only shows limited efficacy in glioblastoma patients with unmethylated O-6-methylguanine-DNA methyltransferase (MGMT) promoter status. Recently, it has been shown that glioblastoma cells communicate via particular ion-channels—so-called gap junctions. Interestingly, inhibition of these ion channels has been reported to render MGMT promoter-methylated glioblastoma cells more susceptible for a therapy with temozolomide. However, given the percentage of about 65% of glioblastoma patients with an unmethylated MGMT promoter methylation status, this treatment strategy is limited to only a minority of glioblastoma patients. In the present study we show that—in contrast to temozolomide—pharmacological inhibition of intercellular cytosolic traffic via gap junctions reinforces the antitumoral effects of chemotherapeutic agent lomustine, independent of MGMT promoter methylation status. In view of the growing interest of lomustine in glioblastoma first and second line therapy, these findings might provide a clinically-feasible way to profoundly augment chemotherapeutic effects for all glioblastoma patients

    An instrument dedicated for modelling of pulmonary radiotherapy

    No full text
    Background and purpose: Radiotherapy plays a pivotal role in lung cancer treatment. Selection of patients for new (radio)therapeutic options aiming at improving outcomes requires reliable and validated prediction models. We present the implementation of a prospective platform for evaluation and development of lung radiotherapy (proPED-LUNG) as an instrument enabling multidimensional predictive modelling. Materials and methods: ProPED-LUNG was designed to comprise relevant baseline and follow up data of patients receiving pulmonary radiotherapy with curative intent. Patient characteristics, diagnostic and staging information, treatment parameters including full dose-volume-histograms, tumour control, survival, and toxicity are scored. Besides physician-rated data, a range of patient-rated data regarding symptoms and health-related quality-of-life are collected. Results: After 18 months of accrual, 315 patients have been included (accrual rate, 18 per month). Of the first hundred patients included, 70 received conformal (chemo)radiotherapy and 30 underwent stereotactic radiotherapy. Compliance at 3 and 6 months follow-up was 96-100% for patient-rated, and 8194% for physician-rated assessments. For data collection, 0.4 FTE were allocated in a 183 FTE department (0.2%). Conclusions: ProPED-LUNG is feasible with high compliance rates and yields a large amount of high quality prospective disease-related, treatment-related, patient- and physician-rated data which can be used to evaluate new developments in pulmonary radiotherapy. (C) 2015 Elsevier Ireland Ltd. All rights reserved

    The BETER survivorship care initiative for Hodgkin lymphoma; Tailored survivorship care for late effects of treatment

    No full text
    The Dutch BETER consortium has established a national care infrastructure for Hodgkin lymphoma survivors. 'BETER' [the Dutch word for 'better'] stands for Better care after Hodgkin lymphoma (HL): Evaluation of longterm Treatment Effects and screening Recommendations. The survivorship care focuses on longterm effects of HL treatment. Over 10,000 HL survivors who were treated in the period spanning 19652008 have been identified. As part of the survivorship care initiative, specific BETER outpatient clinics have been set up. A dedicated website, www.beternahodgkin.nl, provides HL survivors with relevant information. The stakeholders of the BETER survivorship care programme aim to achieve an improved healthy life expectancy for patients treated for HL
    corecore