174 research outputs found

    The effect of AGN feedback on the halo mass function

    Full text link
    [Abridged.] We investigate baryon effects on the halo mass function (HMF), with emphasis on the role played by AGN feedback. Halos are identified with both Friends-of-Friends (FoF) and Spherical Overdensity (SO) algorithms. We embed the standard SO algorithm into a memory-controlled frame program and present the {\bf P}ython spher{\bf I}c{\bf A}l {\bf O}verdensity code --- {\small PIAO}. For both FoF and SO halos, the effect of AGN feedback is that of suppressing the HMFs to a level even below that of Dark Matter simulations. The ratio between the HMFs in the AGN and in the DM simulations is ∼0.8\sim 0.8 at overdensity Δc=500\Delta_c=500, a difference that increases at higher overdensity Δc=2500\Delta_c=2500, with no significant redshift and mass dependence. A decrease of the halo masses ratio with respect to the DM case induces the decrease of the HMF in the AGN simulation. The shallower inner density profiles of halos in the AGN simulation witnesses that mass reduction is induced by the sudden displacement of gas induced by thermal AGN feedback. We provide fitting functions to describe halo mass variations at different overdensities, which can recover the HMFs with a residual random scatter <5\lt 5 per cent for halo masses larger than 1013 h−1M⊙10^{13} ~h^{-1}{\rm M_\odot}.Comment: 16 pages, 11 figures. Matches to MNRAS published version, typo corrected in the fitting functio

    On the Discrepancy between Theoretical and X-Ray Concentration-Mass Relations for Galaxy Clusters

    Full text link
    [Abridged] In the past 15 years, the concentration-mass relation has been investigated diffusely in theoretical studies. On the other hand, only recently has this relation been derived from X-ray observations. When that happened, the results caused a certain level of concern: the X-ray normalizations and slopes were found significantly dissimilar from those predicted by theory. We analyzed 52 objects, simulated each time with different physical recipes for the baryonic component, as well as 60 synthetic X-ray images, to determine if these discrepancies are real or artificial. In particular, we investigate how the simulated concentration-mass relation depends (1) on the radial range used to derive the concentration, (2) on the presence of baryons in the simulations, and on the prescription used to reproduce the gas. Finally, we evaluate (3) how the results differ when adopting an X-ray approach for the analysis and (4) how the selection functions based on X-ray luminosity can impact the results. All effects studied go in the direction of alleviating the discrepancy between observations and simulations, although with different significance: while the fitting radial range and the baryonic component play only a minor role, the X-ray approach and selection function have profound repercussion on the resulting concentration-mass relation.Comment: 15 pages, 11 figures, 3 tables, ApJ in press. Significant extension of the study of the selection-function influence and more attentive treatment of errors (results unchanged

    The relation between velocity dispersion and mass in simulated clusters of galaxies: dependence on the tracer and the baryonic physics

    Full text link
    [Abridged] We present an analysis of the relation between the masses of cluster- and group-sized halos, extracted from Λ\LambdaCDM cosmological N-body and hydrodynamic simulations, and their velocity dispersions, at different redshifts from z=2z=2 to z=0z=0. The main aim of this analysis is to understand how the implementation of baryonic physics in simulations affects such relation, i.e. to what extent the use of the velocity dispersion as a proxy for cluster mass determination is hampered by the imperfect knowledge of the baryonic physics. In our analysis we use several sets of simulations with different physics implemented. Velocity dispersions are determined using three different tracers, DM particles, subhalos, and galaxies. We confirm that DM particles trace a relation that is fully consistent with the theoretical expectations based on the virial theorem and with previous results presented in the literature. On the other hand, subhalos and galaxies trace steeper relations, and with larger values of the normalization. Such relations imply that galaxies and subhalos have a ∼10\sim10 per cent velocity bias relative to the DM particles, which can be either positive or negative, depending on halo mass, redshift and physics implemented in the simulation. We explain these differences as due to dynamical processes, namely dynamical friction and tidal disruption, acting on substructures and galaxies, but not on DM particles. These processes appear to be more or less effective, depending on the halo masses and the importance of baryon cooling, and may create a non-trivial dependence of the velocity bias and the \soneD--\Mtwo relation on the tracer, the halo mass and its redshift. These results are relevant in view of the application of velocity dispersion as a proxy for cluster masses in ongoing and future large redshift surveys.Comment: 13 pages, 16 figures. Minor modifications to match the version in press on MNRA

    Improving fast generation of halo catalogs with higher-order Lagrangian perturbation theory

    Get PDF
    We present the latest version of Pinocchio, a code that generates catalogues of DM haloes in an approximate but fast way with respect to an N-body simulation. This code version extends the computation of particle and halo displacements up to 3rd-order Lagrangian Perturbation Theory (LPT), in contrast with previous versions that used Zeldovich approximation (ZA). We run Pinocchio on the same initial configuration of a reference N-body simulation, so that the comparison extends to the object-by-object level. We consider haloes at redshifts 0 and 1, using different LPT orders either for halo construction - where displacements are needed to decide particle accretion onto a halo or halo merging - or to compute halo final positions. We compare the clustering properties of Pinocchio haloes with those from the simulation by computing the power spectrum and 2-point correlation function (2PCF) in real and redshift space (monopole and quadrupole), the bispectrum and the phase difference of halo distributions. We find that 2LPT and 3LPT give noticeable improvement. 3LPT provides the best agreement with N-body when it is used to displace haloes, while 2LPT gives better results for constructing haloes. At the highest orders, linear bias is typically recovered at a few per cent level. In Fourier space and using 3LPT for halo displacements, the halo power spectrum is recovered to within 10 per cent up to kmax∼0.5 h/k_{max}\sim0.5\ h/Mpc. The results presented in this paper have interesting implications for the generation of large ensemble of mock surveys aimed at accurately compute covariance matrices for clustering statistics.Comment: 20 pages, 20 figures, submitted to MNRA

    Simulating realistic disk galaxies with a novel sub-resolution ISM model

    Get PDF
    We present results of cosmological simulations of disk galaxies carried out with the GADGET-3 TreePM+SPH code, where star formation and stellar feedback are described using our MUlti Phase Particle Integrator (MUPPI) model. This description is based on simple multi-phase model of the interstellar medium at unresolved scales, where mass and energy flows among the components are explicitly followed by solving a system of ordinary differential equations. Thermal energy from SNe is injected into the local hot phase, so as to avoid that it is promptly radiated away. A kinetic feedback prescription generates the massive outflows needed to avoid the over-production of stars. We use two sets of zoomed-in initial conditions of isolated cosmological halos with masses (2-3) * 10^{12} Msun, both available at several resolution levels. In all cases we obtain spiral galaxies with small bulge-over-total stellar mass ratios (B/T \approx 0.2), extended stellar and gas disks, flat rotation curves and realistic values of stellar masses. Gas profiles are relatively flat, molecular gas is found to dominate at the centre of galaxies, with star formation rates following the observed Schmidt-Kennicutt relation. Stars kinematically belonging to the bulge form early, while disk stars show a clear inside-out formation pattern and mostly form after redshift z=2. However, the baryon conversion efficiencies in our simulations differ from the relation given by Moster et al. (2010) at a 3 sigma level, thus indicating that our stellar disks are still too massive for the Dark Matter halo in which they reside. Results are found to be remarkably stable against resolution. This further demonstrates the feasibility of carrying out simulations producing a realistic population of galaxies within representative cosmological volumes, at a relatively modest resolution.Comment: 19 pages, 21 figures, MNRAS accepte

    Brightest cluster galaxies in cosmological simulations: achievements and limitations of AGN feedback models

    Get PDF
    We analyze the basic properties of Brightest Cluster Galaxies (BCGs) produced by state of the art cosmological zoom-in hydrodynamical simulations. These simulations have been run with different sub-grid physics included. Here we focus on the results obtained with and without the inclusion of the prescriptions for supermassive black hole (SMBH) growth and of the ensuing Active Galactic Nuclei (AGN) feedback. The latter process goes in the right direction of decreasing significantly the overall formation of stars. However, BCGs end up still containing too much stellar mass, a problem that increases with halo mass, and having an unsatisfactory structure. This is in the sense that their effective radii are too large, and that their density profiles feature a flattening on scales much larger than observed. We also find that our model of thermal AGN feedback has very little effect on the stellar velocity dispersions, which turn out to be very large. Taken together, these problems, which to some extent can be recognized also in other numerical studies typically dealing with smaller halo masses, indicate that on one hand present day sub-resolution models of AGN feedback are not effective enough in diminishing the global formation of stars in the most massive galaxies, but on the other hand they are relatively too effective in their centers. It is likely that a form of feedback generating large scale gas outflows from BCGs precursors, and a more widespread effect over the galaxy volume, can alleviate these difficulties.Comment: 17 pages, 14 figures, accepted for publication on MNRAS, comments welcom

    Cosmological simulations of black hole growth: AGN luminosities and downsizing

    Full text link
    In this study, we present a detailed, statistical analysis of black hole growth and the evolution of active galactic nuclei (AGN) using cosmological hydrodynamic simulations run down to z=0z=0. The simulations self-consistently follow radiative cooling, star formation, metal enrichment, black hole growth and associated feedback processes from both supernovae typeII/Ia and AGN. We consider two simulation runs, one with a large co-moving volume of $(500\ \mathrm{Mpc})^3andonewithasmallervolumeof and one with a smaller volume of (68\ \mathrm{Mpc})^3butwithabyafactorofalmost20highermassresolution.Consistentlywithpreviousresults,oursimulationscanwidelymatchobservedblackholepropertiesofthelocalUniverse.Furthermore,oursimulationscansuccessfullyreproducetheevolutionofthebolometricAGNluminosityfunctionforboththelow−luminosityandthehigh−luminosityendupto but with a by a factor of almost 20 higher mass resolution. Consistently with previous results, our simulations can widely match observed black hole properties of the local Universe. Furthermore, our simulations can successfully reproduce the evolution of the bolometric AGN luminosity function for both the low-luminosity and the high-luminosity end up to z=3.0.Inaddition,thesmallerbuthigherresolutionrunisabletomatchtheobservationaldataofthelowbolometricluminosityendathigherredshifts. In addition, the smaller but higher resolution run is able to match the observational data of the low bolometric luminosity end at higher redshifts z=3-4$. We also perform a direct comparison with the observed soft and hard X-ray luminosity functions of AGN, including an empirical correction for a torus-level obscuration, and find a similarly good agreement. These results nicely demonstrate that the observed "anti-hierarchical" trend in the AGN number density evolution (i.e. the number densities of luminous AGN peak at higher redshifts than those of faint AGN) is self-consistently predicted by our simulations. Implications of this downsizing behaviour on active black holes, their masses and Eddington-ratios are discussed. Overall, the downsizing behaviour in the AGN number density as a function of redshift can be mainly attributed to the evolution of the gas density in the resolved vicinity of a (massive) black hole. (shortened)Comment: 24 pages, 15 figures, 1 table, accepted for publication in MNRAS, the analysis is updated using a simulation run with a cosmological volume of (500Mpc)^3 containing 2*1,564^3 particle
    • …
    corecore