1,637 research outputs found

    A cross‐ecosystem comparison of the strength of trophic cascades

    Get PDF
    Although trophic cascades (indirect effects of predators on plants via herbivores) occur in a wide variety of food webs, the magnitudes of their effects are often quite variable. We compared the responses of herbivore and plant communities to predator manipulations in 102 field experiments in six different ecosystems: lentic (lake and pond), marine, and stream benthos, lentic and marine plankton, and terrestrial (grasslands and agricultural fields). Predator effects varied considerably among systems and were strongest in lentic and marine benthos and weakest in marine plankton and terrestrial food webs. Predator effects on herbivores were generally larger and more variable than on plants, suggesting that cascades often become attenuated at the plant - herbivore interface. Top-down control of plant biomass was stronger in water than on land; however, the differences among the five aquatic food webs were as great as those between wet and dry systems

    The OPERA experiment Target Tracker

    Get PDF
    The main task of the Target Tracker detector of the long baseline neutrino oscillation OPERA experiment is to locate in which of the target elementary constituents, the lead/emulsion bricks, the neutrino interactions have occurred and also to give calorimetric information about each event. The technology used consists in walls of two planes of plastic scintillator strips, one per transverse direction. Wavelength shifting fibres collect the light signal emitted by the scintillator strips and guide it to both ends where it is read by multi-anode photomultiplier tubes. All the elements used in the construction of this detector and its main characteristics are described.Comment: 25 pages, submitted to Nuclear Instrument and Method

    Antimatter and Matter Production in Heavy Ion Collisions at CERN (The NEWMASS Experiment NA52)

    Get PDF
    Besides the dedicated search for strangelets NA52 measures light (anti)particle and (anti)nuclei production over a wide range of rapidity. Compared to previous runs the statistics has been increased in the 1998 run by more than one order of magnitude for negatively charged objects at different spectrometer rigidities. Together with previous data taking at a rigidity of -20 GeV/c we obtained 10^6 antiprotons 10^3 antideuterons and two antihelium3 without centrality requirements. We measured nuclei and antinuclei (p,d,antiprotons, antideuterons) near midrapidity covering an impact parameter range of b=2-12 fm. Our results strongly indicate that nuclei and antinuclei are mainly produced via the coalescence mechanism. However the centrality dependence of the antibaryon to baryon ratios show that antibaryons are diminished due to annihilation and breakup reactions in the hadron dense environment. The volume of the particle source extracted from coalescence models agrees with results from pion interferometry for an expanding source. The chemical and thermal freeze-out of nuclei and antinuclei appear to coincide with each other and with the thermal freeze-out of hadrons.Comment: 12 pages, 8 figures, to appear in the proceedings of the conference on 'Fundamental Issues in Elementary Matter' Bad Honnef, Germany, Sept. 25-29, 200

    Nutrients cause grassland biomass to outpace herbivory : author correction

    Get PDF
    Fil: Borer, Elizabeth T. University of Minnesota. Department of Ecology, Evolution and Behavior. St. Paul, MN, USA.Fil: Harpole, W. Stanley. Helmholtz Center for Environmental Research. Department of Physiological Diversity. Leipzig, Germany.Fil: Harpole, W. Stanley. German Centre for Integrative Biodiversity Research (iDiv). Leipzig, Germany.Fil: Harpole, W. Stanley. Martin Luther University Halle - Wittenberg. Saale, Germany.Fil: Adler, Peter B. Utah State University. Department of Wildland Resources and the Ecology Center. Logan, UT, USA.Fil: Arnillas, C. A. University of Toronto - Scarborough. Department of Physical and Environmental Sciences. Toronto, ON, Canada.Fil: Bugalho, M. N. University of Lisbon. School of Agriculture. Centre for Applied Ecology (CEABN-InBIO). Tapada da Ajuda, Lisbon, Portugal.Fil: Cadotte, Marc William. University of Toronto - Scarborough. Department of Biological Sciences. Toronto, ON, Canada.Fil: Caldeira, M. C. University of Lisbon. School of Agriculture. Forest Research Center. Tapada da Ajuda, Lisbon, Portugal.Fil: Campana, María Sofía. Universidad de Buenos Aires. Facultad de Agronomía. Instituto de Investigaciones Fisiológicas y Ecológicas Vinculadas a la Agricultura (IFEVA). Buenos Aires, Argentina.Fil: Campana, María Sofía. CONICET – Universidad de Buenos Aires. Instituto de Investigaciones Fisiológicas y Ecológicas Vinculadas a la Agricultura (IFEVA). Buenos Aires, Argentina.Human activities are transforming grassland biomass via changing climate, elemental nutrients, and herbivory. Theory predicts that food-limited herbivores will consume any additional biomass stimulated by nutrient inputs (‘consumer-controlled’). Alternatively, nutrient supply is predicted to increase biomass where herbivores alter community composition or are limited by factors other than food (‘resource-controlled’). Using an experiment replicated in 58 grasslands spanning six continents, we show that nutrient addition and vertebrate herbivore exclusion each caused sustained increases in aboveground live biomass over a decade, but consumer control was weak. However, at sites with high vertebrate grazing intensity or domestic livestock, herbivores consumed the additional fertilizationinduced biomass, supporting the consumer-controlled prediction. Herbivores most effectively reduced the additional live biomass at sites with low precipitation or high ambient soil nitrogen. Overall, these experimental results suggest that grassland biomass will outstrip wild herbivore control as human activities increase elemental nutrient supply, with widespread consequences for grazing and fire risk

    Nutrients cause grassland biomass to outpace herbivory

    Get PDF
    Fil: Borer, Elizabeth T. University of Minnesota. Department of Ecology, Evolution and Behavior. St. Paul, MN, USA.Fil: Harpole, W. Stanley. Helmholtz Center for Environmental Research. Department of Physiological Diversity. Leipzig, Germany.Fil: Harpole, W. Stanley. German Centre for Integrative Biodiversity Research (iDiv). Leipzig, Germany.Fil: Harpole, W. Stanley. Martin Luther University Halle - Wittenberg. Saale, Germany.Fil: Adler, Peter B. Utah State University. Department of Wildland Resources and the Ecology Center. Logan, UT, USA.Fil: Arnillas, C. A. University of Toronto - Scarborough. Department of Physical and Environmental Sciences. Toronto, ON, Canada.Fil: Bugalho, M. N. University of Lisbon. School of Agriculture. Centre for Applied Ecology (CEABN-InBIO).Tapada da Ajuda, Lisbon, Portugal.Fil: Cadotte, Marc William. University of Toronto - Scarborough. Department of Biological Sciences. Toronto, ON, Canada.Fil: Caldeira, M. C. University of Lisbon. School of Agriculture. Forest Research Center. Tapada da Ajuda, Lisbon, Portugal.Fil: Campana, María Sofía. Universidad de Buenos Aires. Facultad de Agronomía. Instituto de Investigaciones Fisiológicas y Ecológicas Vinculadas a la Agricultura (IFEVA). Buenos Aires, Argentina.Fil: Campana, María Sofía. CONICET – Universidad de Buenos Aires. Instituto de Investigaciones Fisiológicas y Ecológicas Vinculadas a la Agricultura (IFEVA). Buenos Aires, Argentina.Human activities are transforming grassland biomass via changing climate, elemental nutrients, and herbivory. Theory predicts that food-limited herbivores will consume any additional biomass stimulated by nutrient inputs (‘consumer-controlled’). Alternatively, nutrient supply is predicted to increase biomass here herbivores alter community composition or are limited by factors other than food (‘resource-controlled’). Using an experiment replicated in 58 grasslands spanning six continents, we show that nutrient addition and vertebrate herbivore exclusion each caused sustained increases in aboveground live biomass\nover a decade, but consumer control was weak. However, at sites with high vertebrate grazing intensity or domestic livestock, herbivores consumed the additional fertilizationinduced biomass, supporting the consumer-controlled prediction. Herbivores most effectively reduced the additional live biomass at sites with low precipitation or high ambient soil nitrogen. Overall, these experimental results suggest that grassland biomass will outstrip wild herbivore control as human activities increase elemental nutrient supply, with widespread consequences for grazing and fire risk.grafs

    Non-random biodiversity loss underlies predictable increases in viral disease prevalence

    Get PDF
    Disease dilution (reduced disease prevalence with increasing biodiversity) has been described for many different pathogens. Although the mechanisms causing this phenomenon remain unclear, the disassembly of communities to predictable subsets of species, which can be caused by changing climate, land use or invasive species, underlies one important hypothesis. In this case, infection prevalence could reflect the competence of the remaining hosts. To test this hypothesis, we measured local host species abundance and prevalence of four generalist aphid-vectored pathogens (barley and cereal yellow dwarf viruses) in a ubiquitous annual grass host at 10 sites spanning 2000 km along the North American West Coast. In laboratory and field trials, we measured viral infection as well as aphid fecundity and feeding preference on several host species. Virus prevalence increased as local host richness declined. Community disassembly was non-random: ubiquitous hosts dominating species-poor assemblages were among the most competent for vector production and virus transmission. This suggests that non-random biodiversity loss led to increased virus prevalence. Because diversity loss is occurring globally in response to anthropogenic changes, such work can inform medical, agricultural and veterinary disease research by providing insights into the dynamics of pathogens nested within a complex web of environmental forces

    Multibaryons in the collective coordinate approach to the SU(3) Skyrme model

    Get PDF
    We obtain the rotational spectrum of strange multibaryon states by performing the SU(3) collective coordinate quantization of the static multi-Skyrmions. These background configurations are given in terms of rational maps, which are very good approximations and share the same symmetries as the exact solutions. Thus, the allowed quantum numbers in the spectra and the structure of the collective Hamiltonians we obtain are also valid in the exact case. We find that the predicted spectra are in overall agreement with those corresponding to the alternative bound state soliton model.Comment: 16 pages, 1 figur

    Nothing lasts forever: Dominant species decline under rapid environmental change in global grasslands

    Get PDF
    1. Dominance often indicates one or a few species being best suited for resource capture and retention in a given environment. Press perturbations that change availability of limiting resources can restructure competitive hierarchies, allowing new species to capture or retain resources and leaving once dominant species fated to decline. However, dominant species may maintain high abundances even when their new environments no longer favour them due to stochastic processes associated with their high abundance, impeding deterministic processes that would otherwise diminish them. 2. Here, we quantify the persistence of dominance by tracking the rate of decline in dominant species at 90 globally distributed grassland sites under experimentally elevated soil nutrient supply and reduced vertebrate consumer pressure. 3. We found that chronic experimental nutrient addition and vertebrate exclusion caused certain subsets of species to lose dominance more quickly than in control plots. In control plots, perennial species and species with high initial cover maintained dominance for longer than annual species and those with low initial cover respectively. In fertilized plots, species with high initial cover maintained dominance at similar rates to control plots, while those with lower initial cover lost dominance even faster than similar species in controls. High initial cover increased the estimated time to dominance loss more strongly in plots with vertebrate exclosures than in controls. Vertebrate exclosures caused a slight decrease in the persistence of dominance for perennials, while fertilization brought perennials' rate of dominance loss in line with those of annuals. Annual species lost dominance at similar rates regardless of treatments. 4. Synthesis. Collectively, these results point to a strong role of a species' historical abundance in maintaining dominance following environmental perturbations. Because dominant species play an outsized role in driving ecosystem processes, their ability to remain dominant—regardless of environmental conditions—is critical to anticipating expected rates of change in the structure and function of grasslands. Species that maintain dominance while no longer competitively favoured following press perturbations due to their historical abundances may result in community compositions that do not maximize resource capture, a key process of system responses to global change.EEA Santa CruzFil: Wilfahrt, Peter A. University of Minnesota. Department of Ecology, Evolution, and Behavior; Estados UnidosFil: Seabloom, Eric William. University of Minnesota. Department of Ecology, Evolution, and Behavior; Estados UnidosFil: Bakker, Jonathan D. University of Washington. School of Environmental and Forest Sciences; Estados Unidos.Fil: Biederman, Lori A. Iowa State University. Department of Ecology, Evolution, and Organismal Biology; Estados UnidosFil: Bugalho, Miguel N. University of Lisbon. Centre for Applied Ecology “Prof. Baeta Neves” (CEABN-InBIO). School of Agriculture; Portugal.Fil: Cadotte, Marc W. University of Toronto Scarborough. Department of Biological Sciences; CanadĂĄ.Fil: Caldeira, Maria C. University of Lisbon. Forest Research Centre. School of Agriculture; Portugal.Fil: Catford, Jane A. King’s College London. Department of Geography; Reino UnidoFil: Catford, Jane A. University of Melbourne. School of Agriculture, Food and Ecosystem Sciences; Australia.Fil: Chen, Qingqing. Peking University. College of Urban and Environmental Science; China.Fil: Chen, Qingqing. German Centre for Integrative Biodiversity Research (iDiv). Halle-Jena-Leipzig; AlemaniaFil: Donohue, Ian. Trinity College Dublin. School of Natural Sciences. Department of Zoology; IrlandaFil: Peri, Pablo Luis. Instituto Nacional de TecnologĂ­a Agropecuaria (INTA). EstaciĂłn Experimental Agropecuaria Santa Cruz; Argentina.Fil: Peri, Pablo Luis. Universidad Nacional de la Patagonia Austral.; Argentina.Fil: Peri, Pablo Luis. Consejo Nacional de Investigaciones CientĂ­ficas y TĂ©cnicas; Argentina.Fil: Borer, Elizabeth T. University of Minnesota. Department of Ecology, Evolution, and Behavior; Estados Unido
    • 

    corecore