275 research outputs found

    Detection and mapping of volcanic rock assemblages and associated hydrothermal alteration with Thermal Infrared Multiband Scanner (TIMS) data Comstock Lode Mining District, Virginia City, Nevada

    Get PDF
    Thermal Infrared Multispectral Scanner (TIMS) data were acquired over the Virginia City area on September 12, 1984. The data were acquired at approximately 1130 hours local time (1723 IRIG). The TIMS data were analyzed using both photointerpretation and digital processing techniques. Karhuen-Loeve transformations were utilized to display variations in radiant spectral emittance. The TIMS image data were compared with color infrared metric camera photography, LANDSAT Thematic Mapper (TM) data, and key areas were photographed in the field

    Application of Thermal Infrared Multiband Scanner (TIMS) data to mapping of Plutonic and stratified rock and assemblages in accreted terrains of the Northern Sierra, California

    Get PDF
    The Thermal Infrared Multispectral Scanner (TIMS) data were acquired over the Donner Pass area in California on September 12, 1985. The higher peaks in the area approach 9,200 feet in elevation, while the canyon of the north fork of the American River is only 3000 feet in elevation. The vegetation is dominated by conifers, although manzanita and other shrubs are present in areas where soils have developed. The data contain noise patterns which cut across scan lines diagonally. The TIMS data were analyzed using both photointerpretative and digital processing techniques. Preliminary image interpretation and field analysis confirmed that TIMS image data displays the chert units and silicic volcanics as bright red. The imagery appears to display zoning in the batholithic and hypabyssal intrusive rocks, although this was not field checked at this time. Rocks which appear to be more dioritic in composition appear purple on the imagery, while rocks more granitic in composition appear shades of red and pink. Areas that have more than 40% vegetative cover appear green on the imagery

    The Presence of the Buddha: Transmission of Sacred Authority and the Function of Ornament in Seiryōji's Living Icon

    Get PDF
    In 985, a Japanese monk named Chōnen commissioned a statue of Śākyamuni Buddha during a pilgrimage to China, which was later enshrined in the temple Seiryōji near Kyoto, Japan. The statue was lavishly ornamented both on its exterior and interior and came to be considered a "living icon" modeled after the legendary first portrait of the historical Buddha made under the patronage of the Indian king Udāyana. Through a holistic examination of historical context, textual evidence, and the diverse forms of ritual adornment (shōgon), I argue that the Seiryōji statue was designed to function as a field for the perpetual generation of karmic merit (fukuden). This statue, through the careful selection of inserted objects and their resonance with its external appearance, embodies the multiplicity of the "Buddha body" as the "living" body of the historical Śāyamuni and the eternally present Buddha of the Lotus Sutra

    Evaluation of aircraft microwave data for locating zones for well stimulation and enhanced gas recovery

    Get PDF
    Imaging radar was evaluated as an adjunct to conventional petroleum exploration techniques, especially linear mapping. Linear features were mapped from several remote sensor data sources including stereo photography, enhanced LANDSAT imagery, SLAR radar imagery, enhanced SAR radar imagery, and SAR radar/LANDSAT combinations. Linear feature maps were compared with surface joint data, subsurface and geophysical data, and gas production in the Arkansas part of the Arkoma basin. The best LANDSAT enhanced product for linear detection was found to be a winter scene, band 7, uniform distribution stretch. Of the individual SAR data products, the VH (cross polarized) SAR radar mosaic provides for detection of most linears; however, none of the SAR enhancements is significantly better than the others. Radar/LANDSAT merges may provide better linear detection than a single sensor mapping mode, but because of operator variability, the results are inconclusive. Radar/LANDSAT combinations appear promising as an optimum linear mapping technique, if the advantages and disadvantages of each remote sensor are considered

    Anti-Human Interleukin(IL)-4 Clone 8D4-8 Cross-Reacts With Myosin-9 Associated With Apoptotic Cells and Should Not Be Used for Flow Cytometry Applications Querying IL-4 Expression

    Get PDF
    Interleukin(IL)-4 is produced by T cells and other leukocytes and is a critical mediator of monocyte and B cell responses. During routine flow cytometry panel validation for the investigation of intracellular cytokines, we observed unique IL-4 expression patterns associated with the widely available monoclonal antibody 8D4-8. Namely, IL-4 (8D4-8) expression was observed in the absence of cellular activation and enhanced following staurosporine exposure. Mass spectrometry analysis of immunoprecipitates from peripheral blood lymphocytes (PBL) revealed that 8D4-8 cross-reacts with the ubiquitous cytoskeletal protein myosin-9. We confirmed these results by western blotting immunoprecipitates, using immunofluorescence among staurosporine-treated Caco-2 cells, and by surface-labeling PBL for 8D4-8 and myosin-9 and analyzing by flow cytometry. Although previously reported from several independent groups, we found no evidence to support the hypothesis that IL-4 is produced by apoptotic cells. Rather, this appears to have been myosin-9. Our data indicate clone 8D4-8 should not be used in the flow cytometric study of IL-4. Furthermore, our work calls for a reevaluation of previous flow cytometric studies that have used this clone for IL-4 analysis and highlights the importance of validation in antibody-based assays

    Global Gene Expression Profiles of Subcutaneous Adipose and Muscle from Glucose-Tolerant, Insulin-Sensitive, and Insulin-Resistant Individuals Matched for BMI

    Get PDF
    OBJECTIVE - To determine altered gene expression profiles in subcutaneous adipose and skeletal muscle from nondiabetic, insulin-resistant individuals compared with insulin-sensitive individuals matched for BMI. RESEARCH DESIGN AND METHODS - A total of 62 nondiabetic individuals were chosen for extremes of insulin sensitivity (31 insulin-resistant and 31 insulin-sensitive subjects; 40 were European American and 22 were African American) and matched for age and obesity measures. Global gene expression profiles were determined and compared between ethnic groups and between insulin-resistant and insulin-sensitive participants individually and using gene-set enrichment analysis. RESULTS - African American and European American subjects differed in 58 muscle and 140 adipose genes, including many inflammatory and metabolically important genes. Peroxisome proliferator-activated receptor γ cofactor 1A (PPARGC1A) was 1.75-fold reduced with insulin resistance in muscle, and fatty acid and lipid metabolism and oxidoreductase activity also were down-regulated. Unexpected categories included ubiquitination, citrullination, and protein degradation. In adipose, highly represented categories included lipid and fatty acid metabolism, insulin action, and cell-cycle regulation. Inflammatory genes were increased in European American subjects and were among the top Kyoto Encyclopedia of Genes and Genomes pathways on gene-set enrichment analysis. FADS1, VEGFA, PTPN3, KLF15, PER3, STEAP4, and AGTR1 were among genes expressed differentially in both adipose and muscle. CONCLUSIONS - Adipose tissue gene expression showed more differences between insulin-resistant versus insulin-sensitive groups than the expression of genes in muscle. We confirm the role of PPARGC1A in muscle and show some support for inflammation in adipose from European American subjects but find prominent roles for lipid metabolism in insulin sensitivity independent of obesity in both tissues. Diabetes 60:1019–1029, 201

    The Lipogenic Enzymes DGAT1, FAS, and LPL in Adipose Tissue: Effects of Obesity, Insulin Resistance, and TZD Treatment

    Get PDF
    Acyl-coenzyme A:diacylglycerol transferase (DGAT), fatty acid synthetase (FAS), and LPL are three enzymes important in adipose tissue triglyceride accumulation. To study the relationship of DGAT1, FAS, and LPL with insulin, we examined adipose mRNA expression of these genes in subjects with a wide range of insulin sensitivity (SI). DGAT1 and FAS (but not LPL) expression were strongly correlated with SI. In addition, the expression of DGAT1 and FAS (but not LPL) were higher in normal glucose-tolerant subjects compared with subjects with impaired glucose tolerance (IGT) (P \u3c 0.005). To study the effects of insulin sensitizers, subjects with IGT were treated with pioglitazone or metformin for 10 weeks, and lipogenic enzymes were measured in adipose tissue. After pioglitazone treatment, DGAT1 expression was increased by 33 ± 10% (P \u3c 0.05) and FAS expression increased by 63 ± 8% (P \u3c 0.05); however, LPL expression was not altered. DGAT1, FAS, and LPL mRNA expression were not significantly changed after metformin treatment. The treatment of mice with rosiglitazone also resulted in an increase in adipose expression of DGAT1 by 2- to 3-fold, as did the treatment of 3T3 F442A adipocytes in vitro with thiazolidinediones. These data support a more global concept suggesting that adipose lipid storage functions to prevent peripheral lipotoxicity

    Pioglitazone Induces Apoptosis of Macrophages in Human Adipose Tissue

    Get PDF
    Metabolic syndrome and type 2 diabetes mellitus are associated with an increased number of macrophage cells that infiltrate white adipose tissue (WAT). Previously, we demonstrated that the treatment of subjects with impaired glucose tolerance (IGT) with the peroxisome proliferator-activated receptor γ (PPARγ) agonist pioglitazone resulted in a decrease in macrophage number in adipose tissue. Here, adipose tissue samples from IGT subjects treated with pioglitazone were examined for apoptosis with terminal deoxynucleotidyl transferase-mediated dUTP-biotin nick end labeling (TUNEL) staining. TUNEL-positive cells were identified, and there was a significant 42% increase in TUNEL-positive cells following pioglitazone treatment. Overlay experiments with anti-CD68 antibody demonstrated that most of theTUNEL-positive cellsweremacrophages.To determine whether macrophage apoptosis was a direct or indirect effect of pioglitazone treatment, human THP1 cells were treated with pioglitazone in vitro, demonstrating increased TUNEL staining in a dose- and time-dependent manner. Furthermore, the appearance of the active proteolytic subunits of caspase-3 and caspase-9 were detected in cell lysate from THP1 cells and also increased in a dose- and time-dependent manner following pioglitazone treatment. Pretreatment with a PPARγ inhibitor, GW9662, prevented pioglitazone induction of the apoptotic pathway in THP1 cells. Differentiated human adipocytes did not show any significant increase in apoptosis after treatment in vitro with piolgitazone. These findings indicate that PPARγ has distinct functions in different cell types in WAT, such that pioglitazone reduces macrophage infiltration by inducing apoptotic cell death specifically in macrophages through PPARγ activation
    corecore