466 research outputs found

    An efficient composite membrane to improve the performance of PEM reversible fuel cells

    Get PDF
    The aim of this study is to develop composite Nafion/GO membranes, varying GO loading, to be used in a Unitized reversible fuel cell comparing its performance with the baseline Nafion. Water uptake, ion exchange capacity (IEC), tensile strength, and SEM (scanning electron microscope) analysis are discussed. The SEM analysis revealed how the GO is homogeneously disposed into the Nafion matrix. The addition of GO improves the membrane tensile strength while reducing the elongation ratio. Water uptake, IEC enhance with the increasing of GO content. Regarding fuel cell mode, the performance is analysed using a polarization curve on a MEA with an effective area of 9 cm2. The composite membrane demonstrated higher mechanical strength, enhanced water uptake so higher performance in fuel cell mode. Despite the power absorbed from the electrolysis is higher when using a composite membrane, the beneficial effect in FC mode resulted in a slightly higher round trip efficiency. The GO-Nafion membrane was not able to maintain its performance with increasing the operating time, so potentially leading to a lower lifetime than the Nafion bare

    Effects of wall curvature on the dynamics of an impinging jet and resulting heat transfer

    Get PDF
    The effects of wall curvature on the dynamics of a round subsonic jet impinging on a concave surface are investigated for the first time by direct numerical solution of the compressible Navier-Stokes equations. Impinging jets on curved surfaces are of interest in several applications, such as the impingement cooling of gas turbine blades. The simulation is performed at Reynolds and Mach numbers respectively equal to 3, 300 and 0.8. The impingement wall is kept at a constant temperature, 80 K higher than that of the jet at the inlet. The nozzle-to-plate distance (measured along the jet axis) is set to 5D, with D the nozzle diameter. In order to highlight the curvature effects, the present results are compared to a previous study of jet impinging on a flat plate. The specific influence of wall curvature is investigated through a frequency analysis based on discrete Fourier transform and dynamic mode decomposition. We found that the peak frequencies of the heat transfer also dominate the dynamics of primary vortices in the free jet region and secondary vortices produced by the interaction of primary vortices and the target plate. These frequencies are approximately 30% lower than those found in the reference study of impinging jet on a flat plate. Imperceptible differences were instead found in the time-averaged integral heat transfer

    Direct numerical simulation of an oblique jet in a particle-laden crossflow

    Get PDF
    Jet in crossflow is a classic fluid dynamics problem widely studied in the last decades because of the big quantity of natural and industrial processes in which it is encountered (Mahesh in Annu Rev Fluid Mech 45(1):379–407, 2013 [6]). The present study focuses on the interaction between solid suspended particles and gas turbines film cooling that is a commonly used coolant technique aiming at generating a protective film of cold fluid around the blade profile. Effective cooling systems are crucial to increase turbine inlet gas temperature and to protect turbine blade surfaces from the huge thermal stress generated

    transcriptional regulation of nuclear genes controlling plastid differentiation in tomato

    Get PDF
    ABSTRACTSeveral mechanisms which control transcription of genes encoding plastidial proteins in tomato are overviewed: light, the circadian clock, photooxidative stress and tissue-specific factors. Protein factors binding promoters of genes responding to such stimuli are described, as well as their abundance during the various phases of the light-dark cycle. Finally, the structure and regulation of a novel class of genes encoding plastidial enzymes, controlling carotenoid biosynthesis, are describe

    Water washing of axial flow compressors: Numerical study on the fate of injected droplets

    Get PDF
    In turbomachinery applications blade fouling represents a main cause of performance degradation. Among the different techniques currently available, online water washing is one of the most effective in removing deposit from the blades. Since this kind of washing is applied when the machine is close to design conditions, injected droplets are strongly accelerated when they reach the rotor blades and the understanding of their interaction with the blades is not straightforward. Moreover, undesirable phenomena like blades erosion or liquid film formation can occur. The present study aims at assessing droplets dragging from the injection system placed at the compressor inlet till the first stage rotor blades, with a focus on droplets impact locations, on the washing process and the associated risk of erosion. 3D numerical simulations of the whole compressor geometry (up to the first rotor stage) are performed by using Ansys Fluent to account for the asymmetric distribution of the sprays around of the machine struts, IGV and rotor blades. The simulations are carried out by adopting the k-ϵ realizable turbulence model with standard wall functions, coupled with the discretephase model to track injected droplets motion. Droplets-wall interaction is also accounted for by adopting the Stanton-Rutland model which define a droplet impact outcome depending on the impact conditions. The induced erosion is evaluated by adopting an erosion model previously developed by some of the authors and implemented in Fluent through the use of a User Defined Function (UDF). Two sets of simulations are performed, by considering the rotor still and rotating, representative of off-line and on-line water washing conditions, respectively. In the rotating simulation, the Multiple Reference Frame Model is used. The obtained results demonstrate that the washing process differs substantially between the fixed and the rotating case. Moreover, to quantify the water washing effectiveness and the erosion risk, new indices were introduced and computed for the main components of the machine. These indices can be considered as useful prescriptions in the optimization process of water washing systems

    Fluidized bed gasification of biomass from plant-assisted bioremediation: Fate of contaminants

    Get PDF
    Fluidized-bed gasification (FBG) of Phyto-assisted Bioremediation (PABR) biomass is analyzed focusing on the contaminants' dispersion. Poplar pruning coming from an area contaminated by polychlorinated biphenyls (PCBs) and heavy metals (HM) are considered. The biomass analysis showed relevant contents in HMs, especially Cd and Cr, and no significant PCB content. FBG process was analyzed to: a) track pollutants, b) detect contaminants in the FBG and c) investigate the HMs concentration in the produced streams. The results showed that most of the metals are concentrated in the ashes collected in the bottom of the reactor (Pb, Cd, Cu, Cr), or in the cyclone (B, Na, Mg, Al, K and Fe). Interestingly, metals are also released by the olivine bed (Mg, Fe, Ni and Al) and transported downstream. Consistent fractions of Zn and Fe (also Cu) were detected in the fugitive ashes. As for the Volatile Organic Compounds (VOC) concentration, we noted similarities between PABR and virgin biomass syngas streams. A reduced-scale process was carried out in TGA-DTA to investigate the potential of such technique in reproducing the main features of the FBG process. Comparable results were obtained, thus suggesting its possible application for small-scale preliminary assessment of FBG process

    Characterization of marble weathering through pore structure quantitative analysis

    Get PDF
    Y Stone weathering is strongly controlled by the intrinsic properties of the stone and by its use. Previous studies demonstrate that the response to natural or artificial ageing processes of the rocks seems to be strongly influenced by the pore structure of the stone. A better understanding of this phenomenon is provided by the study and characterization of porosity and of the pore structure at different degrees of alteration. The analysis of the evolution of the decay leads to the evaluation of the durability of marble in facades, and more generally in buildings, as well as for the protection and recovery of artistic and architectural heritage.In this paper, we apply a methodology for the geometrical characterization of the pore structure to quantify alteration induced by natural weathering on marble slabs. The approach is based on the application of a path-finding algorithm to 2D binary images representative of thin sections of marble at different degrees of alteration. Through the identification of the paths within the porous domain, the methodology allows the characterization of the pore structure in terms of pore radius distribution along the identified paths. Analysis of the results demonstrate a good agreement between the degree of alteration of the pore structure and the corresponding variation of the physical and mechanical properties of the rock samples under investigation

    States of 15C via the (18O,16O) reaction

    Get PDF
    A study of the 15C states was pursued in 2008 at the Catania INFN-LNS laboratory by the 13C(18O,16O)15C reaction at 84 MeV incident energy. The 16O ejectiles were detected at forward angles by the MAGNEX magnetic spectrometer. Thanks to an innovative technique the ejectiles were identified without the need of time of flight measurements. Exploiting the large momentum acceptance (25%) and solid angle (50 msr) of the spectrometer, the 15C energy spectra were obtained with a quite relevant yield up to about 20 MeV excitation energy. The application of the powerful technique of the trajectory reconstruction did allow to get an energy resolution of about 250 keV FWHM, limited mainly by straggling effects. The spectra show several known low lying states up to about 7 MeV excitation energy as well as two unknown resonant structures at about 11.4 and 13.5 MeV. The strong excitation of these latter together with the measured width of about 2 MeV FWHM could indicate the presence of collective modes of excitation connected to the transfer of a correlated neutron pair
    • …
    corecore