107 research outputs found

    Human Adenovirus Type 36 Enhances Glucose Uptake in Diabetic and Nondiabetic Human Skeletal Muscle Cells Independent of Insulin Signaling

    Get PDF
    OBJECTIVE—Human adenovirus type 36 (Ad-36) increases adiposity but improves insulin sensitivity in experimentally infected animals. We determined the ability of Ad-36 to increase glucose uptake by human primary skeletal muscle (HSKM) cells

    Creatine Protects against Excitoxicity in an In Vitro Model of Neurodegeneration

    Get PDF
    Creatine has been shown to be neuroprotective in aging, neurodegenerative conditions and brain injury. As a common molecular background, oxidative stress and disturbed cellular energy homeostasis are key aspects in these conditions. Moreover, in a recent report we could demonstrate a life-enhancing and health-promoting potential of creatine in rodents, mainly due to its neuroprotective action. In order to investigate the underlying pharmacology mediating these mainly neuroprotective properties of creatine, cultured primary embryonal hippocampal and cortical cells were challenged with glutamate or H2O2. In good agreement with our in vivo data, creatine mediated a direct effect on the bioenergetic balance, leading to an enhanced cellular energy charge, thereby acting as a neuroprotectant. Moreover, creatine effectively antagonized the H2O2-induced ATP depletion and the excitotoxic response towards glutamate, while not directly acting as an antioxidant. Additionally, creatine mediated a direct inhibitory action on the NMDA receptor-mediated calcium response, which initiates the excitotoxic cascade. Even excessive concentrations of creatine had no neurotoxic effects, so that high-dose creatine supplementation as a health-promoting agent in specific pathological situations or as a primary prophylactic compound in risk populations seems feasible. In conclusion, we were able to demonstrate that the protective potential of creatine was primarily mediated by its impact on cellular energy metabolism and NMDA receptor function, along with reduced glutamate spillover, oxidative stress and subsequent excitotoxicity

    The nuclear envelope protein, LAP1B, is a novel protein phosphatase 1 substrate

    Get PDF
    Protein phosphatase 1 (PP1) binding proteins are quintessential regulators, determining substrate specificity and defining subcellular localization and activity of the latter. Here, we describe a novel PP1 binding protein, the nuclear membrane protein lamina associated polypeptide 1B (LAP1B), which interacts with the DYT1 dystonia protein torsinA. The PP1 binding domain in LAP1B was here identified as the REVRF motif at amino acids 55-59. The LAP1B:PP1 complex can be immunoprecipitated from cells in culture and rat cortex and the complex was further validated by yeast co-transformations and blot overlay assays. PP1, which is enriched in the nucleus, binds to the N-terminal nuclear domain of LAP1B, as shown by immunocolocalization and domain specific binding studies. PP1 dephosphorylates LAP1B, confirming the physiological relevance of this interaction. These findings place PP1 at a key position to participate in the pathogenesis of DYT1 dystonia and related nuclear envelope-based diseases.publishe

    Developmental changes in human dopamine neurotransmission: cortical receptors and terminators

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Dopamine is integral to cognition, learning and memory, and dysfunctions of the frontal cortical dopamine system have been implicated in several developmental neuropsychiatric disorders. The dorsolateral prefrontal cortex (DLPFC) is critical for working memory which does not fully mature until the third decade of life. Few studies have reported on the normal development of the dopamine system in human DLPFC during postnatal life. We assessed pre- and postsynaptic components of the dopamine system including tyrosine hydroxylase, the dopamine receptors (D1, D2 short and D2 long isoforms, D4, D5), catechol-<it>O</it>-methyltransferase, and monoamine oxidase (A and B) in the developing human DLPFC (6 weeks -50 years).</p> <p>Results</p> <p>Gene expression was first analysed by microarray and then by quantitative real-time PCR. Protein expression was analysed by western blot. Protein levels for tyrosine hydroxylase peaked during the first year of life (p < 0.001) then gradually declined to adulthood. Similarly, mRNA levels of dopamine receptors D2S (p < 0.001) and D2L (p = 0.003) isoforms, monoamine oxidase A (p < 0.001) and catechol-<it>O</it>-methyltransferase (p = 0.024) were significantly higher in neonates and infants as was catechol-<it>O</it>-methyltransferase protein (32 kDa, p = 0.027). In contrast, dopamine D1 receptor mRNA correlated positively with age (p = 0.002) and dopamine D1 receptor protein expression increased throughout development (p < 0.001) with adults having the highest D1 protein levels (p ≤ 0.01). Monoamine oxidase B mRNA and protein (p < 0.001) levels also increased significantly throughout development. Interestingly, dopamine D5 receptor mRNA levels negatively correlated with age (r = -0.31, p = 0.018) in an expression profile opposite to that of the dopamine D1 receptor.</p> <p>Conclusions</p> <p>We find distinct developmental changes in key components of the dopamine system in DLPFC over postnatal life. Those genes that are highly expressed during the first year of postnatal life may influence and orchestrate the early development of cortical neural circuitry while genes portraying a pattern of increasing expression with age may indicate a role in DLPFC maturation and attainment of adult levels of cognitive function.</p

    Severity dependent distribution of impairments in PSP and CBS: Interactive visualizations

    Get PDF
    BACKGROUND: Progressive supranuclear palsy (PSP) -Richardson's Syndrome and Corticobasal Syndrome (CBS) are the two classic clinical syndromes associated with underlying four repeat (4R) tau pathology. The PSP Rating Scale is a commonly used assessment in PSP clinical trials; there is an increasing interest in designing combined 4R tauopathy clinical trials involving both CBS and PSP. OBJECTIVES: To determine contributions of each domain of the PSP Rating Scale to overall severity and characterize the probable sequence of clinical progression of PSP as compared to CBS. METHODS: Multicenter clinical trial and natural history study data were analyzed from 545 patients with PSP and 49 with CBS. Proportional odds models were applied to model normalized cross-sectional PSP Rating Scale, estimating the probability that a patient would experience impairment in each domain using the PSP Rating Scale total score as the index of overall disease severity. RESULTS: The earliest symptom domain to demonstrate impairment in PSP patients was most likely to be Ocular Motor, followed jointly by Gait/Midline and Daily Activities, then Limb Motor and Mentation, and finally Bulbar. For CBS, Limb Motor manifested first and ocular showed less probability of impairment throughout the disease spectrum. An online tool to visualize predicted disease progression was developed to predict relative disability on each subscale per overall disease severity. CONCLUSION: The PSP Rating Scale captures disease severity in both PSP and CBS. Modelling how domains change in relation to one other at varying disease severities may facilitate detection of therapeutic effects in future clinical trials

    Plasticity in D1-Like Receptor Expression Is Associated with Different Components of Cognitive Processes

    Get PDF
    Dopamine D1-like receptors consist of D1 (D1A) and D5 (D1B) receptors and play a key role in working memory. However, their possibly differential contribution to working memory is unclear. We combined a working memory training protocol with a stepwise increase of cognitive subcomponents and real-time RT-PCR analysis of dopamine receptor expression in pigeons to identify molecular changes that accompany training of isolated cognitive subfunctions. In birds, the D1-like receptor family is extended and consists of the D1A, D1B, and D1D receptors. Our data show that D1B receptor plasticity follows a training that includes active mental maintenance of information, whereas D1A and D1D receptor plasticity in addition accompanies learning of stimulus-response associations. Plasticity of D1-like receptors plays no role for processes like response selection and stimulus discrimination. None of the tasks altered D2 receptor expression. Our study shows that different cognitive components of working memory training have distinguishable effects on D1-like receptor expression

    Essential Nutrients for Bone Health and a Review of their Availability in the Average North American Diet

    Get PDF
    Osteoporosis and low bone mineral density affect millions of Americans. The majority of adults in North America have insufficient intake of vitamin D and calcium along with inadequate exercise. Physicians are aware that vitamin D, calcium and exercise are essential for maintenance of bone health. Physicians are less likely to be aware that dietary insufficiencies of magnesium, silicon, Vitamin K, and boron are also widely prevalent, and each of these essential nutrients is an important contributor to bone health. In addition, specific nutritional factors may improve calcium metabolism and bone formation. It is the authors’ opinion that nutritional supplements should attempt to provide ample, but not excessive, amounts of factors that are frequently insufficient in the typical American diet

    Ventricular Dysrhythmias Associated with Poisoning and Drug Overdose: A 10-Year Review of Statewide Poison Control Center Data from California

    Full text link
    Background: Ventricular dysrhythmias are a serious consequence associated with drug overdose and chemical poisoning. The risk factors for the type of ventricular dysrhythmia and the outcomes by drug class are not well documented. Objective: The aim of this study was to determine the most common drugs and chemicals associated with ventricular dysrhythmias and their outcomes. Methods: We reviewed all human exposures reported to a statewide poison control system between 2002 and 2011 that had a documented ventricular dysrhythmia. Cases were differentiated into two groups by type of arrhythmia: (1) ventricular fibrillation and/or tachycardia (VT/VF); and (2) torsade de pointes (TdP). Results: Among the 300 potential cases identified, 148 cases met the inclusion criteria. Of these, 132 cases (89&nbsp;%) experienced an episode of VT or VF, while the remaining 16 cases (11&nbsp;%) had an episode of TdP. The most commonly involved therapeutic classes of drugs associated with VT/VF were antidepressants (33/132, 25&nbsp;%), stimulants (33/132, 25&nbsp;%), and diphenhydramine (16/132, 12.1&nbsp;%). Those associated with TdP were antidepressants (4/16, 25&nbsp;%), methadone (4/16, 25&nbsp;%), and antiarrhythmics (3/16, 18.75&nbsp;%). Drug exposures with the greatest risk of death in association with VT/VF were antidepressant exposure [odds ratio (OR) 1.71; 95&nbsp;% confidence interval (CI) 0.705–4.181] and antiarrhythmic exposure (OR 1.75; 95&nbsp;% CI 0.304–10.05), but neither association was statistically significant. Drug exposures with a statistically significant risk for TdP included methadone and antiarrhythmic drugs. Conclusions: Antidepressants and stimulants were the most common drugs associated with ventricular dysrhythmias. Patients with suspected poisonings by medications with a high risk of ventricular dysrhythmia warrant prompt ECG monitoring
    corecore