75 research outputs found

    iAB-RBC-283: A proteomically derived knowledge-base of erythrocyte metabolism that can be used to simulate its physiological and patho-physiological states

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The development of high-throughput technologies capable of whole cell measurements of genes, proteins, and metabolites has led to the emergence of systems biology. Integrated analysis of the resulting omic data sets has proved to be hard to achieve. Metabolic network reconstructions enable complex relationships amongst molecular components to be represented formally in a biologically relevant manner while respecting physical constraints. <it>In silico </it>models derived from such reconstructions can then be queried or interrogated through mathematical simulations. Proteomic profiling studies of the mature human erythrocyte have shown more proteins present related to metabolic function than previously thought; however the significance and the causal consequences of these findings have not been explored.</p> <p>Results</p> <p>Erythrocyte proteomic data was used to reconstruct the most expansive description of erythrocyte metabolism to date, following extensive manual curation, assessment of the literature, and functional testing. The reconstruction contains 281 enzymes representing functions from glycolysis to cofactor and amino acid metabolism. Such a comprehensive view of erythrocyte metabolism implicates the erythrocyte as a potential biomarker for different diseases as well as a 'cell-based' drug-screening tool. The analysis shows that 94 erythrocyte enzymes are implicated in morbid single nucleotide polymorphisms, representing 142 pathologies. In addition, over 230 FDA-approved and experimental pharmaceuticals have enzymatic targets in the erythrocyte.</p> <p>Conclusion</p> <p>The advancement of proteomic technologies and increased generation of high-throughput proteomic data have created the need for a means to analyze these data in a coherent manner. Network reconstructions provide a systematic means to integrate and analyze proteomic data in a biologically meaning manner. Analysis of the red cell proteome has revealed an unexpected level of complexity in the functional capabilities of human erythrocyte metabolism.</p

    Network reconstruction of platelet metabolism identifies metabolic signature for aspirin resistance.

    Get PDF
    Recently there has not been a systematic, objective assessment of the metabolic capabilities of the human platelet. A manually curated, functionally tested, and validated biochemical reaction network of platelet metabolism, iAT-PLT-636, was reconstructed using 33 proteomic datasets and 354 literature references. The network contains enzymes mapping to 403 diseases and 231 FDA approved drugs, alluding to an expansive scope of biochemical transformations that may affect or be affected by disease processes in multiple organ systems. The effect of aspirin (ASA) resistance on platelet metabolism was evaluated using constraint-based modeling, which revealed a redirection of glycolytic, fatty acid, and nucleotide metabolism reaction fluxes in order to accommodate eicosanoid synthesis and reactive oxygen species stress. These results were confirmed with independent proteomic data. The construction and availability of iAT-PLT-636 should stimulate further data-driven, systems analysis of platelet metabolism towards the understanding of pathophysiological conditions including, but not strictly limited to, coagulopathies

    Systems biology analysis of drivers underlying hallmarks of cancer cell metabolism.

    Get PDF
    Malignant transformation is often accompanied by significant metabolic changes. To identify drivers underlying these changes, we calculated metabolic flux states for the NCI60 cell line collection and correlated the variance between metabolic states of these lines with their other properties. The analysis revealed a remarkably consistent structure underlying high flux metabolism. The three primary uptake pathways, glucose, glutamine and serine, are each characterized by three features: (1) metabolite uptake sufficient for the stoichiometric requirement to sustain observed growth, (2) overflow metabolism, which scales with excess nutrient uptake over the basal growth requirement, and (3) redox production, which also scales with nutrient uptake but greatly exceeds the requirement for growth. We discovered that resistance to chemotherapeutic drugs in these lines broadly correlates with the amount of glucose uptake. These results support an interpretation of the Warburg effect and glutamine addiction as features of a growth state that provides resistance to metabolic stress through excess redox and energy production. Furthermore, overflow metabolism observed may indicate that mitochondrial catabolic capacity is a key constraint setting an upper limit on the rate of cofactor production possible. These results provide a greater context within which the metabolic alterations in cancer can be understood

    Personalized Whole-Cell Kinetic Models of Metabolism for Discovery in Genomics and Pharmacodynamics

    Get PDF
    SummaryUnderstanding individual variation is fundamental to personalized medicine. Yet interpreting complex phenotype data, such as multi-compartment metabolomic profiles, in the context of genotype data for an individual is complicated by interactions within and between cells and remains an unresolved challenge. Here, we constructed multi-omic, data-driven, personalized whole-cell kinetic models of erythrocyte metabolism for 24 healthy individuals based on fasting-state plasma and erythrocyte metabolomics and whole-genome genotyping. We show that personalized kinetic rate constants, rather than metabolite levels, better represent the genotype. Additionally, changes in erythrocyte dynamics between individuals occur on timescales of circulation, suggesting detected differences play a role in physiology. Finally, we use the models to identify individuals at risk for a drug side effect (ribavirin-induced anemia) and how genetic variation (inosine triphosphatase deficiency) may protect against this side effect. This study demonstrates the feasibility of personalized kinetic models, and we anticipate their use will accelerate discoveries in characterizing individual metabolic variation

    Elucidating dynamic metabolic physiology through network integration of quantitative time-course metabolomics.

    Get PDF
    Efst á síðunni er hægt að nálgast greinina í heild sinni með því að smella á hlekkinn To access publisher's full text version of this article. Please click on the hyperlink in Additional Links field.The increasing availability of metabolomics data necessitates novel methods for deeper data analysis and interpretation. We present a flux balance analysis method that allows for the computation of dynamic intracellular metabolic changes at the cellular scale through integration of time-course absolute quantitative metabolomics. This approach, termed "unsteady-state flux balance analysis" (uFBA), is applied to four cellular systems: three dynamic and one steady-state as a negative control. uFBA and FBA predictions are contrasted, and uFBA is found to be more accurate in predicting dynamic metabolic flux states for red blood cells, platelets, and Saccharomyces cerevisiae. Notably, only uFBA predicts that stored red blood cells metabolize TCA intermediates to regenerate important cofactors, such as ATP, NADH, and NADPH. These pathway usage predictions were subsequently validated through (13)C isotopic labeling and metabolic flux analysis in stored red blood cells. Utilizing time-course metabolomics data, uFBA provides an accurate method to predict metabolic physiology at the cellular scale for dynamic systems.National Heart Lung and Blood Institute European Research Council U.S. Department of Energ

    Multiscale modeling of metabolism and macromolecular synthesis in E. coli and its application to the evolution of codon usage.

    Get PDF
    Biological systems are inherently hierarchal and multiscale in time and space. A major challenge of systems biology is to describe biological systems as a computational model, which can be used to derive novel hypothesis and drive experiments leading to new knowledge. The constraint-based reconstruction and analysis approach has been successfully applied to metabolism and to the macromolecular synthesis machinery assembly. Here, we present the first integrated stoichiometric multiscale model of metabolism and macromolecular synthesis for Escherichia coli K12 MG1655, which describes the sequence-specific synthesis and function of almost 2000 gene products at molecular detail. We added linear constraints, which couple enzyme synthesis and catalysis reactions. Comparison with experimental data showed improvement of growth phenotype prediction with the multiscale model over E. coli's metabolic model alone. Many of the genes covered by this integrated model are well conserved across enterobacters and other, less related bacteria. We addressed the question of whether the bias in synonymous codon usage could affect the growth phenotype and environmental niches that an organism can occupy. We created two classes of in silico strains, one with more biased codon usage and one with more equilibrated codon usage than the wildtype. The reduced growth phenotype in biased strains was caused by tRNA supply shortage, indicating that expansion of tRNA gene content or tRNA codon recognition allow E. coli to respond to changes in codon usage bias. Our analysis suggests that in order to maximize growth and to adapt to new environmental niches, codon usage and tRNA content must co-evolve. These results provide further evidence for the mutation-selection-drift balance theory of codon usage bias. This integrated multiscale reconstruction successfully demonstrates that the constraint-based modeling approach is well suited to whole-cell modeling endeavors

    Insight into human alveolar macrophage and M. tuberculosis interactions via metabolic reconstructions

    Get PDF
    A human alveolar macrophage genome-scale metabolic reconstruction was reconstructed from tailoring a global human metabolic network, Recon 1, by using computational algorithms and manual curation.A genome-scale host–pathogen network of the human alveolar macrophage and Mycobacterium tuberculosis is presented. This involved integrating two genome-scale network reconstructions.The reaction activity and gene essentiality predictions of the host–pathogen model represent a more accurate depiction of infection.Integration of high-throughput data into a host-pathogen model followed by systems analysis was performed in order to elucidate major metabolic differences under different types of M. tuberculosis infection
    corecore