9 research outputs found

    Effect of L-amino acid-based biostimulants on nitrogen use efficiency (NUE) in lettuce plants

    Get PDF
    Biostimulants are increasingly integrated into production systems with the goal of modifying physiological processes in plants to optimize productivity. Specifically, L-α-amino acid-based biostimulants enhance plant productivity through improved photosynthesis and increased assimilation of essential nutrients such as nitrogen (N). This element is a major component of fertilizers, which usually are applied in excess. Thus, the inefficient use of N fertilizers has generated a serious situation of environmental pollution issue. The use of biostimulants has the potential to address all the problems related to N fertilization. Therefore, the objective of this study is to analyze whether two biostimulants based on L-α-amino acid (Terra Sorb® radicular and Terramin® Pro) designed by Bioiberica, S.A.U company can compensate deficient N fertilization and test its effect on lettuce plants. Growth, photosynthetic, N accumulation, and N use efficiency (NUE) parameters were analyzed on lettuce leaves

    Porcine Digestible Peptides (PDP) in Weanling Diets Regulates the Expression of Genes Involved in Gut Barrier Function, Immune Response and Nutrient Transport in Nursery Pigs

    Get PDF
    CRAG 10.3390/ani10122368This study was conducted to investigate the effects of dietary supplementation of porcine digestible peptides (PDP), spray-dried plasma (SDP), or a combination of both, on growth performance and the expression of genes related to intestinal function of weaned pigs. A total of 180 piglets (trial 1) and 198 piglets (trial 2) were used to evaluate the partial substitution of soybean ingredients with 2% SDP or 2% PDP (trial 1), and with 3% SDP or the combination of 1% SDP and 2% PDP (SDP-PDP; trial 2) during the pre-starter period (0-14 days). The gene expression of 56 genes was quantified in a qPCR platform in jejunum and ileum samples obtained from piglets 14 d after weaning (trial 2). Piglets fed SDP, PDP and SDP-PDP had a higher body weight (BW), average daily gain (ADG) and feed efficiency (G:F) than the soybean control on day 14 (p < 0.05). In addition, the combination of SDP and PDP upregulated ten genes in jejunum samples (p < 0.05) related to intestinal function. More research is needed to confirm that gene expression upregulation by PDP in combination with SDP has an impact on intestinal function and to elucidate its underlying mechanisms

    Porcine Digestible Peptides (PDP) in Weanling Diets Regulates the Expression of Genes Involved in Gut Barrier Function, Immune Response and Nutrient Transport in Nursery Pigs

    Get PDF
    This study was conducted to investigate the effects of dietary supplementation of porcine digestible peptides (PDP), spray-dried plasma (SDP), or a combination of both, on growth performance and the expression of genes related to intestinal function of weaned pigs. A total of 180 piglets (trial 1) and 198 piglets (trial 2) were used to evaluate the partial substitution of soybean ingredients with 2% SDP or 2% PDP (trial 1), and with 3% SDP or the combination of 1% SDP and 2% PDP (SDP-PDP; trial 2) during the pre-starter period (0-14 days). The gene expression of 56 genes was quantified in a qPCR platform in jejunum and ileum samples obtained from piglets 14 d after weaning (trial 2). Piglets fed SDP, PDP and SDP-PDP had a higher body weight (BW), average daily gain (ADG) and feed efficiency (G:F) than the soybean control on day 14 (p < 0.05). In addition, the combination of SDP and PDP upregulated ten genes in jejunum samples (p < 0.05) related to intestinal function. More research is needed to confirm that gene expression upregulation by PDP in combination with SDP has an impact on intestinal function and to elucidate its underlying mechanisms

    Application of an Enzymatic Hydrolysed L-α-Amino Acid Based Biostimulant to Improve Sunflower Tolerance to Imazamox

    No full text
    Herbicides, commonly used in agriculture to control weeds, often cause negative effects on crops. Safeners are applied to reduce the damage to crops without affecting the effectiveness of herbicides against weeds. Plant biostimulants have the potential to increase tolerance to a series of abiotic stresses, but very limited information exists about their effects on herbicide-stressed plants. This study aims to verify whether the application of a potential safener such as Terra-Sorb®, an L-α-amino acid-based biostimulant, reduces the phytotoxicity of an Imazamox-based herbicide and to elucidate which tolerance mechanisms are induced. Sunflower plants were treated with Pulsar® 40 (4% Imazamox) both alone and in combination with Terra-Sorb®. Plants treated with the herbicide in combination with Terra-Sorb® showed higher growth, increased acetolactate synthase (ALS) activity, and amino acid concentration with respect to the plants treated with Imazamox alone. Moreover, the biostimulant protected photosynthetic activity and reduced oxidative stress. This protective effect could be due to the glutathione S-transferase (GST) induction and antioxidant systems dependent on glutathione (GSH). However, no effect of the biostimulant application was observed regarding phenolic compound phenylalanine ammonium-lyase (PAL) activity. Therefore, this study opens the perspective of using Terra-Sorb® in protecting sunflower plants against an imazamox-based herbicide effect

    Lettuce Soil Microbiome Modulated by an L-<i>α</i>-Amino Acid-Based Biostimulant

    No full text
    Maintenance of soil health is of foremost importance to sustain and increase crop productivity, while meeting the demand of a rising global population. Soil microbiome is gaining increasing attention as a modulator of soil health. Microbial communities confer traits to the soil as a living organism, which functions holistically and conforms part of the plant holobiont, reassembling the human-gut axis. Novel strategies in biostimulant development advocate for modulation of the native soil microbiome and the reinforcement of microbial networking to outpace pathogen inclusion. Consequently, we hypothesize that Terramin® Pro may promotes beneficial microorganisms, depending on the native microbiota of soil, which would lead to an improvement of crop performance indicators. We proposed a soil microbiome-based approach to characterize the effect of an L-α-amino acid based biostimulant (Terramin® Pro) on resulting plant phenotypes in lettuce cultivars (Lactuca sativa L.) to address our hypothesis. First, product application promoted Actinobacteria group in assorted soils with different track of agronomic practices. Secondly, biostimulant application improved chlorophyll content in particular soils deviating from standard conditions, i.e., sick or uncultivated ones. Specially, we observed that product application at 30 L ha−1 improved lettuce phenotype, while potentially promoted entomopathogenic fungi (Beauveria and Metarhizium spp.) and suppressed other lettuce disease-related fungi (Olpidium spp.) in nematode-infested soils. Further investigations could deepen into Terramin® Pro as a sustainable prebiotic strategy of soil indigenous microbiota, through in-house microbiome modulation, even in additional crops
    corecore