9 research outputs found

    Loss of full-length dystrophin expression results in major cell-autonomous abnormalities in proliferating myoblasts

    Get PDF
    Duchenne muscular dystrophy (DMD) affects myofibers and muscle stem cells, causing progressive muscle degeneration and repair defects. It was unknown whether dystrophic myoblasts—the effector cells of muscle growth and regeneration—are affected. Using transcriptomic, genome-scale metabolic modelling and functional analyses, we demonstrate, for the first time, convergent abnormalities in primary mouse and human dystrophic myoblasts. In Dmd(mdx) myoblasts lacking full-length dystrophin, the expression of 170 genes was significantly altered. Myod1 and key genes controlled by MyoD (Myog, Mymk, Mymx, epigenetic regulators, ECM interactors, calcium signalling and fibrosis genes) were significantly downregulated. Gene ontology analysis indicated enrichment in genes involved in muscle development and function. Functionally, we found increased myoblast proliferation, reduced chemotaxis and accelerated differentiation, which are all essential for myoregeneration. The defects were caused by the loss of expression of full-length dystrophin, as similar and not exacerbated alterations were observed in dystrophin-null Dmd(mdx-βgeo) myoblasts. Corresponding abnormalities were identified in human DMD primary myoblasts and a dystrophic mouse muscle cell line, confirming the cross-species and cell-autonomous nature of these defects. The genome-scale metabolic analysis in human DMD myoblasts showed alterations in the rate of glycolysis/gluconeogenesis, leukotriene metabolism, and mitochondrial beta-oxidation of various fatty acids. These results reveal the disease continuum: DMD defects in satellite cells, the myoblast dysfunction affecting muscle regeneration, which is insufficient to counteract muscle loss due to myofiber instability. Contrary to the established belief, our data demonstrate that DMD abnormalities occur in myoblasts, making these cells a novel therapeutic target for the treatment of this lethal disease

    Role of Non-Coding Regulatory Elements in the Control of GR-Dependent Gene Expression

    No full text
    The glucocorticoid receptor (GR, also known as NR3C1) coordinates molecular responses to stress. It is a potent transcription activator and repressor that influences hundreds of genes. Enhancers are non-coding DNA regions outside of the core promoters that increase transcriptional activity via long-distance interactions. Active GR binds to pre-existing enhancer sites and recruits further factors, including EP300, a known transcriptional coactivator. However, it is not known how the timing of GR-binding-induced enhancer remodeling relates to transcriptional changes. Here we analyze data from the ENCODE project that provides ChIP-Seq and RNA-Seq data at distinct time points after dexamethasone exposure of human A549 epithelial-like cell line. This study aimed to investigate the temporal interplay between GR binding, enhancer remodeling, and gene expression. By investigating a single distal GR-binding site for each differentially upregulated gene, we show that transcriptional changes follow GR binding, and that the largest enhancer remodeling coincides in time with the highest gene expression changes. A detailed analysis of the time course showed that for upregulated genes, enhancer activation persists after gene expression changes settle. Moreover, genes with the largest change in EP300 binding showed the highest expression dynamics before the peak of EP300 recruitment. Overall, our results show that enhancer remodeling may not directly be driving gene expression dynamics but rather be a consequence of expression activation

    Antigen-Independent Restriction of Pneumococcal Density by Mucosal Adjuvant Cholera Toxin Subunit B

    No full text
    For many bacterial respiratory infections, development of (severe) disease is preceded by asymptomatic colonization of the upper airways. For Streptococcus pneumoniae, the transition to severe lower respiratory tract infection is associated with an increase in nasopharyngeal colonization density. Insight into how the mucosal immune system restricts colonization may provide new strategies to prevent clinical symptoms. Several studies have provided indirect evidence that the mucosal adjuvant cholera toxin subunit B (CTB) may confer nonspecific protection against respiratory infections. Here, we show that CTB reduces the pneumococcal load in the nasopharynx, which required activation of the caspase-1/11 inflammasome, mucosal T cells, and macrophages. Our findings suggest that CTB-dependent activation of the local innate response synergizes with noncognate T cells to restrict bacterial load. Our study not only provides insight into the immunological components required for containment and clearance of pneumococcal carriage, but also highlights an important yet often understudied aspect of adjuvants
    corecore