376 research outputs found

    Bare Essence

    Get PDF

    The Man in the White Suit

    Get PDF

    Ag85A DNA Vaccine Delivery by Nanoparticles: Influence of the Formulation Characteristics on Immune Responses.

    Get PDF
    The influence of DNA vaccine formulations on immune responses in combination with adjuvants was investigated with the aim to increase cell-mediated immunity against plasmid DNA (pDNA) encoding Mycobacterium tuberculosis antigen 85A. Different ratios of pDNA with cationic trimethyl chitosan (TMC) nanoparticles were characterized for their morphology and physicochemical characteristics (size, zeta potential, loading efficiency and pDNA release profile) applied in vitro for cellular uptake studies and in vivo, to determine the dose-dependent effects of pDNA on immune responses. A selected pDNA/TMC nanoparticle formulation was optimized by the incorporation of muramyl dipeptide (MDP) as an immunostimulatory agent. Cellular uptake investigations in vitro showed saturation to a maximum level upon the increase in the pDNA/TMC nanoparticle ratio, correlating with increasing Th1-related antibody responses up to a definite pDNA dose applied. Moreover, TMC nanoparticles induced clear polarization towards a Th1 response, indicated by IgG2c/IgG1 ratios above unity and enhanced numbers of antigen-specific IFN-γ producing T-cells in the spleen. Remarkably, the incorporation of MDP in TMC nanoparticles provoked a significant additional increase in T-cell-mediated responses induced by pDNA. In conclusion, pDNA-loaded TMC nanoparticles are capable of provoking strong Th1-type cellular and humoral immune responses, with the potential to be further optimized by the incorporation of MDP

    Acidification increases microbial polysaccharide degradation in the ocean

    Get PDF
    © The Authors, 2010. This article is distributed under the terms of the Creative Commons Attribution 3.0 License. The definitive version was published in Biogeosciences 7 (2010): 1615–1624, doi:10.5194/bg-7-1615-2010.With the accumulation of anthropogenic carbon dioxide (CO2), a proceeding decline in seawater pH has been induced that is referred to as ocean acidification. The ocean's capacity for CO2 storage is strongly affected by biological processes, whose feedback potential is difficult to evaluate. The main source of CO2 in the ocean is the decomposition and subsequent respiration of organic molecules by heterotrophic bacteria. However, very little is known about potential effects of ocean acidification on bacterial degradation activity. This study reveals that the degradation of polysaccharides, a major component of marine organic matter, by bacterial extracellular enzymes was significantly accelerated during experimental simulation of ocean acidification. Results were obtained from pH perturbation experiments, where rates of extracellular α- and β-glucosidase were measured and the loss of neutral and acidic sugars from phytoplankton-derived polysaccharides was determined. Our study suggests that a faster bacterial turnover of polysaccharides at lowered ocean pH has the potential to reduce carbon export and to enhance the respiratory CO2 production in the future ocean.This study was supported by the Helmholtz Association (HZ-NG-102) and the Belgian Science Policy (SD/CS/03)

    Changing nutrient stoichiometry affects phytoplankton production, DOP accumulation and dinitrogen fixation – a mesocosm experiment in the eastern tropical North Atlantic

    Get PDF
    Ocean deoxygenation due to climate change may alter redox-sensitive nutrient cycles in the marine environment. The productive eastern tropical North Atlantic (ETNA) upwelling region may be particularly affected when the relatively moderate oxygen minimum zone (OMZ) deoxygenates further and microbially driven nitrogen (N) loss processes are promoted. Consequently, water masses with a low nitrogen to phosphorus (N : P) ratio could reach the euphotic layer, possibly influencing primary production in those waters. Previous mesocosm studies in the oligotrophic Atlantic Ocean identified nitrate availability as a control of primary production, while a possible co-limitation of nitrate and phosphate could not be ruled out. To better understand the impact of changing N : P ratios on primary production and N2 fixation in the ETNA surface ocean, we conducted land-based mesocosm experiments with natural plankton communities and applied a broad range of N : P ratios (2.67–48). Silicic acid was supplied at 15 µmol L−1 in all mesocosms. We monitored nutrient drawdown, biomass accumulation and nitrogen fixation in response to variable nutrient stoichiometry. Our results confirmed nitrate to be the key factor determining primary production. We found that excess phosphate was channeled through particulate organic matter (POP) into the dissolved organic matter (DOP) pool. In mesocosms with low inorganic phosphate availability, DOP was utilized while N2 fixation increased, suggesting a link between those two processes. Interestingly this observation was most pronounced in mesocosms where nitrate was still available, indicating that bioavailable N does not necessarily suppress N2 fixation. We observed a shift from a mixed cyanobacteria–proteobacteria dominated active diazotrophic community towards a diatom-diazotrophic association of the Richelia-Rhizosolenia symbiosis. We hypothesize that a potential change in nutrient stoichiometry in the ETNA might lead to a general shift within the diazotrophic community, potentially influencing primary productivity and carbon export

    Compressor Controls

    Get PDF
    Discussion Grou

    Effect of a two-year national quality improvement program on surgical checklist implementation

    Get PDF
    Use of the surgical checklist in Switzerland is still incomplete and unsatisfactory. A national improvement program was developed and conducted in Switzerland to implement and improve the use of the surgical safety checklists. The aims of the implementation program were to implement comprehensive and correct checklist use in participating hospitals in every patient and in every surgical procedure; and to improve safety climate and teamwork as important cultural context variables. 10 hospitals were selected for participation in the implementation program. A questionnaire assessing use, knowledge, and attitudes towards the checklist and the Safety Climate Survey were conducted at two measurement occasions each in October/November 2013 and January/February 2015. Significant increases emerged for frequency of checklist use (F(1,1001)=340.9, p<0.001), satisfaction (F(1,1232)=25.6, p<0.001), and knowledge(F(1,1294)=184.5, p<0.001). While significant differences in norms (F(1,1284)=17.9, p<0.001) and intentions (F(1,1284)=7.8, p<0.01) were observed, this was not the case for attitudes (F(1,1283)=.8, n.s.) and acceptance (F(1,1284)=0.1, n.s.). Significant differences for safety climate and teamwork emerged in the present study (F(1,3555)=11.8, p<0.001 and F(1,3554)=24.6, p<0.001, respectively). However, although statistical significance was reached, effects are very small and practical relevance is thus questionable. The results of the present study suggest that the quality improvement program conducted by the Swiss Patient Safety Foundation in 10 hospitals led to successful checklist implementation. The strongest effects were seen in aspects concerning behaviour and knowledge specifically related to checklist use. Less impact was achieved on general cultural variables safety climate and teamwork. However, as a trend was observable, these variables may simply need more time in order to change substantially
    corecore