1,569 research outputs found

    Evolution of the Dark Matter Distribution with 3-D Weak Lensing

    Full text link
    We present a direct detection of the growth of large-scale structure, using weak gravitational lensing and photometric redshift data from the COMBO-17 survey. We use deep R-band imaging of two 0.25 square degree fields, affording shear estimates for over 52000 galaxies; we combine these with photometric redshift estimates from our 17 band survey, in order to obtain a 3-D shear field. We find theoretical models for evolving matter power spectra and correlation functions, and fit the corresponding shear correlation functions to the data as a function of redshift. We detect the evolution of the power at the 7.7 sigma level given minimal priors, and measure the rate of evolution for 0<z<1. We also fit correlation functions to our 3-D data as a function of cosmological parameters sigma_8 and Omega_Lambda. We find joint constraints on Omega_Lambda and sigma_8, demonstrating an improvement in accuracy by a factor of 2 over that available from 2D weak lensing for the same area.Comment: 11 pages, 4 figures; submitted to MNRA

    Accelerator Measurements of Magnetically Induced Radio Emission from Particle Cascades with Applications to Cosmic-Ray Air Showers

    Get PDF
    For 50 years, cosmic-ray air showers have been detected by their radio emission. We present the first laboratory measurements that validate electrodynamics simulations used in air shower modeling. An experiment at SLAC provides a beam test of radio-frequency (rf) radiation from charged particle cascades in the presence of a magnetic field, a model system of a cosmic-ray air shower. This experiment provides a suite of controlled laboratory measurements to compare to particle-level simulations of rf emission, which are relied upon in ultrahigh-energy cosmic-ray air shower detection. We compare simulations to data for intensity, linearity with magnetic field, angular distribution, polarization, and spectral content. In particular, we confirm modern predictions that the magnetically induced emission in a dielectric forms a cone that peaks at the Cherenkov angle and show that the simulations reproduce the data within systematic uncertainties

    Maritime Safety in The High North - Risk and Preparedness

    Get PDF
    Author's accepted version (postprint).This is an Accepted Manuscript of an article published by the International Society of Offshore and Polar Engineers in ISOPE - International Society of Offshore and Polar Engineers. Proceedings on 07/2016, available online: http://www.isope.org/publications/proceedings/ISOPE/ISOPE%202016/index.ht

    GEMS: Galaxy Evolution from Morphologies and SEDs

    Full text link
    GEMS, Galaxy Evolution from Morphologies and SEDs, is a large-area (800 arcmin2) two-color (F606W and F850LP) imaging survey with the Advanced Camera for Surveys on HST. Centered on the Chandra Deep Field South, it covers an area of ~28'x28', or about 120 Hubble Deep Field areas, to a depth of m_AB(F606W)=28.3 (5sigma and m_AB(F850LP)=27.1 (5sigma) for compact sources. In its central ~1/4, GEMS incorporates ACS imaging from the GOODS project. Focusing on the redshift range 0.2<=z<=1.1, GEMS provides morphologies and structural parameters for nearly 10,000 galaxies where redshift estimates, luminosities and SEDs exist from COMBO-17. At the same time, GEMS contains detectable host galaxy images for several hundred faint AGN. This paper provides an overview of the science goals, the experiment design, the data reduction and the science analysis plan for GEMS.Comment: 24 pages, TeX with 6 eps Figures; to appear in ApJ Supplement. Low resolution figures only. Full resolution at http://zwicky.as.arizona.edu/~rix/Misc/GEMS.ps.g
    • 

    corecore