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The Sabatier principle as a tool for discovery and
engineering of industrial enzymes
Jeppe Kari1, Kay Schaller2,3, Gustavo A Molina2,4,
Kim Borch5 and Peter Westh2

The recent breakthrough in all-atom, protein structure
prediction opens new avenues for a range of computational
approaches in enzyme design. These new approaches could
become instrumental for the development of technical
biocatalysts, and hence our transition toward more sustainable
industries. Here, we discuss one approach, which is well-known
within inorganic catalysis, but essentially unexploited in
biotechnology. Specifically, we review examples of linear free-
energy relationships (LFERs) for enzyme reactions and discuss
how LFERs and the associated Sabatier Principle may be
implemented in algorithms that estimate kinetic parameters and
enzyme performance based on model structures.
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Introduction
Extended use of biocatalysis is one of the main avenues
toward more sustainable industries. This may involve
the use of free- or immobilized enzymes produced se-
parately or the application of whole-cell catalysts. In

either case, one major challenge is to find enzymes with
the stability, specificity (or promiscuity), and catalytic
rate that are required under industrial conditions. The
challenge of finding adequate enzymes is inescapably
rooted in the astronomical sequence space of protein
molecules, but recent advances hold promise for faster
and more effective methods to search for biocatalysts.
One major leap forward comes from the success of
AlphaFold [1] and other approaches [2] in rapidly gen-
erating reliable model structures from protein se-
quences. These tools can bring our knowledge on
protein tertiary structure on par with the sequence in-
formation, and hence help closing the so-called se-
quence-structure gap, which has increased to around 103

known sequences for every known structure (Figure 1).

The emerging affluence of structural data will un-
doubtedly become vital for future enzyme design, but
routes to harness this potential are not trivial. Thus, a
static 3D structure only provides overall clues about
function, mechanism, and kinetics [3]. Other innovative
inputs will be required to effectively exploit structural
information for in silico-guided enzyme design. In es-
sence, the challenge (labeled ‘2’ in Figure 1) is now to
close the gap between structure on one hand and spe-
cificity, mechanism, and kinetics on the other. One ap-
proach to this is classical structure-based molecular
modeling [4•], which obviously becomes much more
powerful with an almost endless supply of all-atom
model structures. Perhaps more importantly, the surge in
structural information can spur progress in enzyme de-
sign supported by statistical profiling and machine
learning (ML) [5–9]. The efficiency of these approaches
depends on the way the structural data are incorporated
into the design algorithm, and a wide range of principles
for this are currently being tested [7•]. One principle,
which was recently applied successfully for the design of
improved plastic-degrading enzymes [10••], assesses
typical features of the local microenvironments of amino
acids based on training against thousands of known
structures. Once trained, the algorithm can identify po-
sitions that have an unbalanced local environment and
hence appear as good targets for engineering. Other
workers have used more physics-based principles, in-
cluding accessible surface area, logP, pKa, and nucleo-
philicity of catalytic residues in design algorithms [11].
Most work in this area has targeted enzyme selectivity
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and the range of substrates that can be modified, while
less attention has gone into improving catalytic perfor-
mance [12•]. However, improvements in catalytic per-
formance under industrial conditions appear important
as technical gauges such as catalytic space–time yield,
are typically low for biocatalysts compared with in-
organic catalysis [12•].

Here, we discuss a physics-based principle, which may
be implemented for in silico screening of enzyme kinetic
parameters. Specifically, we review literature that links
substrate-binding strength and turnover rates for iso-
functional enzymes. This type of linkage occurs when
there is scaling between the free energy of binding and
the activation barrier (Figure 2), and it holds a potential
to significantly limit the search space. Scaling of binding-
and activation-free energies is reflected qualitatively in
the Sabatier Principle (SP) and quantitatively in so-
called linear free-energy relationships (LFERs). Both SP
and LFERs constitute cornerstones within basic and
applied (nonbiochemical) catalysis, but are only con-
sidered sporadically in biochemistry and biotechnology.
We argue that the current state of affairs with dramatic
increments in the number and quality of protein model
structures provides an excellent foundation for the

implementation of SP and LFER-based algorithms in
the design and discovery of industrial enzymes.

Enzyme reactions and the Sabatier Principle
Enzymatic turnover rates are notoriously difficult to as-
sess in silico. Rigorous approaches to this problem in-
volve high-level theory and extended computation time
[13], and hence remain unrealistic for larger sequence
spaces. Machining learning-based approaches to turn-
over numbers have emerged [14], but it has proven
challenging to identify patterns in catalytic rates based
on sequence- or structure data. This latter difficulty re-
flects at least in part that the catalytic rate is globally
encoded and hence sensitive to the entire sequence [5],
but it could also result from functional effects of cofac-
tors, reaction conditions, conformation of polymeric
substrates, and other factors that are not represented
directly in the sequence [6]. In light of this complexity,
incorporation of basic physical constraints could be
useful in structure-kinetics algorithms.

The century-old SP states that catalysis is most effective
when catalyst-reactant interactions are of intermediate
strength. This is because weak binding (yellow lines in
Figure 2) leads to an insufficient population of

Figure 1
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Two main challenges for computer-assisted discovery and engineering of industrial enzymes. The first involves fast and reliable modeling of enzyme
structure based on the sequence. The second is the computation of phenotypical traits from the (model) structure. For decades, the sequence libraries
have outnumbered structure libraries and the retio is now a factor of around 103, but recent progress in modeling all-atom structures is about to close
this gap (left panel). This opened new opportunities for coming work that addresses the even larger structure-function gap (right panel).
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intermediate, while strong interactions (blue lines in left
panel of Figure 2) delay the catalytic cycle through ac-
cumulation of stable intermediates in deep energy wells.
A similar line of thinking underpins fundamental de-
scriptions of enzyme function [15], but is rarely linked
explicitly to the SP. Practical application of the SP often
involves plots with data from a family of related cata-
lysts. The abscissa is some measure of catalyst-substrate
interaction strength and the ordinate represents the
catalytic rate under a fixed set of experimental condi-
tions. According to the SP, such plots will have a max-
imum at an intermediate interaction strength, and they
have hence been dubbed ‘volcano plots’ (Figure 2, right
panel). A volcano curve arises if the free energies of
intermediates and transition states are not independent,
but shift commensurately for different catalysts [16] as
exemplified schematically in Figure 2 (left panel). This
mutual interdependence of energy levels can also be
expressed as a linear scaling between binding- and ac-
tivation energies, that is, an LFER. This is illustrated in

the middle panel of Figure 2, and discussed in some
more detail in the figure legend. Some influential ex-
amples of LFERs include Brønsted- and Hammet plots,
which are widely used to elucidate rates, mechanisms,
and regioselectivity in organic chemistry [17]. Within
inorganic catalysis, LFERs have proven useful both in
attempts to rationalize comparative data and as a tool to
engineer improved catalysts. Success in this area has
been ascribed to the remarkable simplification, which
occurs when only one or a few intermediates need to be
assessed computationally [18].

Direct experimental evidence for LFERs or SP behavior
for enzyme reactions remains sparse. The most promi-
nent example is still the seminal work by Fersht et al.,
who used experimental LFERs for a series of
tyrosyl–tRNA-synthetase variants to elucidate interac-
tions in the transition state [19,20]. A similar approach
has been used to study the nature of the transition state,
when one enzyme acts on different, chemically related

Figure 2
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Schematic illustration of relationships between energy diagrams (left), scaling relationships (middle), and the SP illustrated in a volcano plot (right). This
example is based on data for eight fungal cellulases (wild types and variants) identified below the plots. (Re: Rasamsonia emersonii, Tr: Trichoderma
reesei, CD: catalytic domain, i.e. enzyme variants where the binding domain has been truncated). The strength of substrate interaction decreases from
blue to yellow, and this is illustrated in the schematic energy diagrams in the left panel. Here, strong binders have deep energy wells for the ES and EP
intermediates, and hence experience high activation barriers for EP dissociation. The diagrams show that the energy of different intermediates and
transition states is not independent, and this is illustrated more directly by the LFER in the middle panel. This plot presents experimental data for the
enzymes considered here (colored symbols) and many other cellulases (gray symbols), and it identifies a linear relationship between binding energy
(approximated by lnKM) and activation energy (approximated by lnkcat). The substrate in these measurements was microcrystalline cellulose. Enzymes
to the bottom/left of the LFER have tight binding and slow turnover at saturation, while those to the top/right have weak binding and fast turnover at
saturation. One direct corollary of this is that the specific activity at a fixed substrate load (subsaturation) has a biphasic behavior as shown in the right
panel. This “volcano” reflects accumulation of intermediates and hence slow reaction of strong binders to left side of the apex. Conversely, weak
binders to the right of the apex perform poorly inspite of their high kcat because too little complex accumulates. This is a restatement of the SP.
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substrates [21]. More recently, LFERs and volcano plots
have been used to rationalize the turnover of a synthetic
DNA-enzyme nanostructure [22], as well as the hydro-
lysis of insoluble substrates such as cellulose and
polyester [23,24]. In addition, some studies have re-
ported kinetic data for the modification of different in-
soluble substrates, which appear consistent with an
LFER although this was not explicitly pointed out by
the authors [25–27].

Sabatier Principle in enzyme discovery and -engineering
The power of the SP lies in its potential to simplify the
selection of enzymes with desired kinetic properties.
Thus, if a characteristic binding strength is indicative of
good turnover at a given set of conditions, the immense
computational endeavor of assessing energies of inter-
mediates and activation barriers can be replaced by cal-
culations of substrate-binding strength. While
computational determination of ligand-binding strength is
far from trivial, numerous fast methods have been devel-
oped primarily for drug discovery [28], and some of these
can probably be applied to enzyme-substrate interactions
with minor adaptations. This was illustrated in a study on

cellulases [29], which used a previously established LFER
[30] between substrate-binding strength and maximal
turnover to guide enzyme discovery. Specifically, kinetic
parameters for all enzymes belonging to Glycoside Hy-
drolase Family 7 (GH7), were estimated from their se-
quences in two computational steps [29]. The first step
involved determination of a model structure (i.e. challenge
1 in Figure 1), and the second was estimation of interac-
tion strength based on very short molecular dynamics si-
mulations and a Linear Free Energy [31] (LIE) method,
which was adapted to account for the multidomain struc-
ture of the enzymes and the solid nature of the substrate.
With the experimental scaling curve [30] and computed
binding strengths [29] at hand, the maximal turnover for
uncharacterized enzymes could be read off the LFER (c.f.
middle panel in Figure 2). Hence, the LFER served to
resolve challenge 2 in Figure 1, and the catalytic perfor-
mance of the enzymes could be estimated as illustrated in
Figure 3. In this example, the throughput was limited by
the speed of computing enzyme-substrate-binding
strength, and one way to speed up this part is to use
machine learning (ML) instead of explicit simulations.
This can be done by training an ML algorithm against

Figure 3

Current Opinion in Biotechnology

SP as a tool for enzyme discovery. Substrate-binding strengths were computed for all cellulases listed in GH7 and indicated by the color code in the
rim of the phylogenetic tree [29]. The investigated enzymes are either endoglucanases (EG) (EC 3.2.1.4) or cellobiohydrolases (CBH) (EC 3.2.1.91) as
specified in the core of the tree. Enzymes that have a CBM (see Figure 2) are identified by a black dot at the outer rim. The rug plots (‘bar codes’) in the
upper right reveal relationships between binding strength, mode of action (EG or CBH), and the presence of a CBM. The computed binding strengths
were first converted to kinetic parameters using an experimental LFER [30]. Second, these parameters were used to estimate hydrolytic rates for these
previously uncharacterized enzymes on 10 g/l microcrystalline cellulose (lower-right panel). The volcano identifies a number of enzymes (e.g. Cel7A
from R. emersonii) near the apex that are likely candidates for good performance under these conditions. We note that the location of the apex
depends on the experimental conditions, and it will, for example, shift toward higher optimal KM values for higher substrate loads (c.f. Figure 4).
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experimental data or rigorously computed interaction
strengths. An initial attempt of using this strategy ap-
peared recently and showed promising results with respect
to throughput and reliability [32].

Algorithms that are supported by LFERs may also have
potential within enzyme engineering. As in enzyme
discovery, the advantage lies in prediction and sorting of
variant kinetics. This could be implemented with a
strategy akin to the one in Figure 3, using computed
binding strength or interaction parameters derived by
ML for putative variants instead of wild-type sequences.
An example of this idea is illustrated in Figure 4.

Concluding remarks
LFERs and the associated SP are well established within
organic chemistry and nonbiochemical catalysis, and have
proven useful both for fundamental and applied problems
within these areas. Further use within computational bio-
catalysis appears promising but will require much better
insights into the nature and prevalence of LFERs for en-
zyme reactions. Some results (discussed above) support the
incidence of LFERs for different hydrolases acting on in-
soluble substrates. Examples of LFERs for soluble sub-
strates have also appeared, but broader approaches such as

meta-analyses of kinetic parameters from databases have
not found clear relationships, for example, between KM (a
descriptor of interaction strength) and kcat (a descriptor of
activation energy) for enzymes acting on their native, so-
luble substrate [33,34]. This could be because KM is a poor
descriptor of substrate affinity or scaling only occurs within
groups of related, isofunctional enzymes, but there are also
challenges related to noise in databases and poor lab-to-lab
reproducibility of kinetic parameters [14,35,36]. This calls
for further systematic and self-consistent biochemical work
on enzyme libraries, which are expressed, purified, and
characterized under the same conditions. While this line of
work may appear archaic in the view of some, it is our
opinion that self-consistent biochemical data are in short
supply and that this makes up a bottleneck for progress
within computational design of industrial enzymes. This is
particularly the case for insoluble substrates, which are
common in industry but not covered at all by current da-
tabases. Fortunately, recent progress in the automation of
gene manipulation, heterologous expression, protein pur-
ification, and activity assays has paved the way for com-
parative biochemistry at a ‘medium-throughput’ level, and
if indeed LFERs can be established from this type of work,
they can be applied in different ways. One obvious, but also
quite elaborate, approach is to analyze computed substrate-

Figure 4
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SP as a tool in enzyme engineering. The left panel shows an experimental LFER for cellulases, which highlights the effect of the mutation W38A in
TrCel7A. It appears that this point mutation changes the kinetics to an extent that corresponds to almost half the functional breadth found for a large
group of structurally and mechanistically different enzymes. Interestingly, the mutant does not show independent changes in kinetic parameters, but
shifts along the LFER. Such changes in catalytic properties, which relies on small alterations in the sequence, are readily described by LFER-based
analyses and this may be used in engineering campaigns. It appears, for example, from the volcano plots (right panels) that this particular mutation
might benefit enzyme performance at intermediate and high substrate loads while it causes adverse effects on activity at low loads.
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binding strengths against an experimental LFER as in the
example in Figure 2. A noteworthy aspect of this method is
that the optimal binding strength shifts with experimental
conditions such as temperature and the load- and physical
properties of an insoluble substrate. This dependence ob-
viously comes with the drawback that a new experimental
LFER must be established for every condition of interest.
On the other hand, the sensitivity to both catalyst and
conditions provides the advantage that the approach may
be applied within both enzyme- and process engineering.
We also envision that linear scaling can be incorporated in
structure-kinetics algorithms, in cases where an experi-
mental LFER is not available as a ‘standard curve’. Thus, if
a reaction is indeed limited by a linear scaling, it can be
used for a coarse sorting of phenotypes, even when slope
and intercept are not known. This less work-intensive
strategy can be used as an early, in silico phase of en-
gineering campaigns that would serve to unveil relative
kinetic traits within a library of enzyme variants. This
would be valuable, for example, in defining an initial group
of enzymes with a suitable phenotypical breadth for sub-
sequent engineering, and we note that this is not readily
done on the basis of sequence alone. This is emphasized in
Figure 4, which shows how a point mutation quite far from
the catalytic residues in a cellulase may evoke large phe-
notypical changes. In fact, the change corresponded to
about half of the functional breath defined by kcat and KM
for over 80 other structurally and functionally diverse cel-
lulases. Interestingly, kcat and KM did not change in-
dependently, but shifted along the LFER, and a similar
behavior with shifts up or down the LFER has been found
for several other enzyme variants [30]. We posit that
LFER-based algorithms are suited to detect and rationalize
kinetic changes in enzyme variants that are caused by small
alterations in the sequence, and that incorporation of scaling
principles in ML algorithms such as those discussed above,
could present a powerful tool in virtual bioprospecting of
industrial enzymes.
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