4 research outputs found

    Computational study of asymmetric iodocyclization

    No full text
    The enantioselective halocyclization reactions have been of particular interest in the past decade. Despite the remarkable advances, the mechanistic details of the processes are not fully understood. In this thesis, we present the results of our computational analysis carried out for a recently published thiourea catalyzed iodolactonization of 5-hexenoic acid, which took place in the presence of N-iodosuccinimide and elemental iodine

    Are bis(pyridine)iodine(i) complexes applicable for asymmetric halogenation?

    No full text
    Enantiopure halogenated molecules are of tremendous importance as synthetic intermediates in the construction of pharmaceuticals, fragrances, flavours, natural products, pesticides, and functional materials. Enantioselective halofunctionalizations remain poorly understood and generally applicable procedures are lacking. The applicability of chiral trans-chelating bis(pyridine)iodine(I) complexes in the development of substrate independent, catalytic enantioselective halofunctionalization has been explored herein. Six novel chiral bidentate pyridine donor ligands have been designed, routes for their synthesis developed and their [N鈥揑鈥揘]+-type halogen bond complexes studied by 15N NMR and DFT. The chiral complexes encompassing a halogen bond stabilized iodenium ion are shown to be capable of efficient iodenium transfer to alkenes; however, without enantioselectivity. The lack of stereoselectivity is shown to originate from the availability of multiple ligand conformations of comparable energies and an insufficient steric influence by the chiral ligand. Substrate preorganization by the chiral catalyst appears a necessity for enantioselective halofunctionalization

    N-alkylated pyridoxal derivatives as negative electrolyte materials for aqueous organic flow batteries: Computational screening

    No full text
    N-functionalized pyridinium frameworks derived from the three major vitamers of vitamin B6, pyridoxal, pyridoxamine and pyridoxine, have been screened computationally for consideration as negative electrode materials in aqueous organic flow batteries. A molecular database including the structure and the one-electron standard reduction potential of related pyridinium derivatives has been generated using a computational protocol that combines semiempirical and DFT quantum chemical methods. The predicted reduction potentials span a broad range for the investigated pyridinium frameworks, but pyridoxal derivatives, particularly those involving electron withdrawing substituents, have potentials compatible with the electrochemical stability window of aqueous electrolytes. The stability of radicals formed upon one-electron reduction has been analyzed by a new computational tool proposed recently for large-scale computational screening

    The Influence of Secondary Interactions on the [N鈭扞鈭扤]+ Halogen Bond

    No full text
    [Bis(pyridine)iodine(I)]+ complexes offer controlled access to halonium ions under mild conditions. The reactivity of such stabilized halonium ions is primarily determined by their three-center, four-electron [N鈭扞鈭扤]+ halogen bond. We studied the importance of chelation, strain, steric hindrance and electrostatic interaction for the structure and reactivity of halogen bonded halonium ions by acquiring their 15N NMR coordination shifts and measuring their iodenium release rates, and interpreted the data with the support of DFT computations. A bidentate ligand stabilizes the [N鈭扞鈭扤]+ halogen bond, decreasing the halenium transfer rate. Strain weakens the bond and accordingly increases the release rate. Remote modifications in the backbone do not influence the stability as long as the effect is entirely steric. Incorporating an electron-rich moiety close by the [N鈭扞鈭扤]+ motif increases the iodenium release rate. The analysis of the iodine(I) transfer mechanism highlights the impact of secondary interactions, and may provide a handle on the induction of stereoselectivity in electrophilic halogenations
    corecore