31 research outputs found
SoC-Cluster as an Edge Server: an Application-driven Measurement Study
Huge electricity consumption is a severe issue for edge data centers. To this
end, we propose a new form of edge server, namely SoC-Cluster, that
orchestrates many low-power mobile system-on-chips (SoCs) through an on-chip
network. For the first time, we have developed a concrete SoC-Cluster server
that consists of 60 Qualcomm Snapdragon 865 SoCs in a 2U rack. Such a server
has been commercialized successfully and deployed in large scale on edge
clouds. The current dominant workload on those deployed SoC-Clusters is cloud
gaming, as mobile SoCs can seamlessly run native mobile games.
The primary goal of this work is to demystify whether SoC-Cluster can
efficiently serve more general-purpose, edge-typical workloads. Therefore, we
built a benchmark suite that leverages state-of-the-art libraries for two
killer edge workloads, i.e., video transcoding and deep learning inference. The
benchmark comprehensively reports the performance, power consumption, and other
application-specific metrics. We then performed a thorough measurement study
and directly compared SoC-Cluster with traditional edge servers (with Intel CPU
and NVIDIA GPU) with respect to physical size, electricity, and billing. The
results reveal the advantages of SoC-Cluster, especially its high energy
efficiency and the ability to proportionally scale energy consumption with
various incoming loads, as well as its limitations. The results also provide
insightful implications and valuable guidance to further improve SoC-Cluster
and land it in broader edge scenarios
A practical grid generation procedure for the design of free-form structures
Computer aided design software enables the rapid conceptual creation of a curved surface geometry, whereas it is neither a convenient nor an obvious task for engineers to create a discrete grid structure on a complex surface that meets architectural and aesthetic requirements. This emphasizes the importance of grid generating tools and methods in the initial design stage. This paper presents an efficient design tool for the synthesis of free-form grid structures based on the "guide line" method, employing a fast and straightforward approach which achieves grids with rods of balanced length and fluent lines. The process starts with defining a limited number of curves (named the "guide lines") on the surface, which are then used to determine the directions of the 'rods' of the grid. Two variations of this concept are introduced in this paper: the ‘Guide Line Scaling Method’ (GSM) and the 'Two Guide Lines with Two End Vertices Method' (2G2VM). Case studies are provided which illustrate the successful execution of these procedures. The results show that the free-form grid structures generated with the proposed methods feature a regular shape and fluent lines, thereby satisfying aesthetic requirements. These two methods have been programmed into the software ZD-Mesher, enabling rapid grid generation for structural design purposes
Meta-Analysis: Overweight, Obesity, and Parkinson's Disease
Objective. Parkinson's disease (PD) is a severe neurological disease and its risk factors remain largely unknown. A meta-analysis was carried out to investigate the relationship of overweight and obesity with PD. Methods. We used PubMed, EMBASE, and the Chinese National Knowledge Infrastructure (CNKI) databases to identify studies of associations between overweight/obesity and PD. Overweight, obesity, and PD were used as keywords, and published works were retrieved until September 30, 2013. The extracted data were classified (BMI≥30,25≤BMI<30, and BMI<25) according to BMI values and analyzed using RevMan5.2 and Stata11.0. Results. Four cohort studies and three case-control studies were used to evaluate the association between overweight/obesity and PD, including 2857 PD patients and 5, 683, 939 cases of non-PD controls. There was a statistically significant difference between 25≤BMI<30 and BMI<25 in the cohort study (RR=1.17, 95% CI, 1.03–1.32, P=0.03), but there was no difference between BMI≥30 and BMI<25 or BMI≥30 and 25≤BMI<30, where the respective RR was 1.16 and 0.84; the respective 95% CI was 0.67–2.01 and 0.61–1.15, respectively, and the P values were 0.60 and 0.28, respectively. Case-control studies showed that there was no statistical difference between any two groups. Conclusion. Meta-analysis showed that overweight might be a potential risk factor of PD. Demonstration of a causal role of overweight/obesity in PD development could have important therapeutic implications
Mechanistic Insight Into the Interaction Between Helicobacter pylori Urease Subunit α and Its Molecular Chaperone Hsp60
Helicobacter pylori is the etiologic agent in a variety of gastroduodenal diseases. As its key pathogenic factors, both urease and Hsp60 play important roles in the pathogenesis of H. pylori. Previous studies have suggested that there is close relationship between urease and Hsp60, which implied that Hsp60 may act as a chaperone in urease stabilization and assembly. However, how these two proteins interact remains unclear. In this study, the impact of Hsp60 on urease activity of H. pylori lysate was first detected to confirm the interaction between urease and Hsp60. Pull-down assays further indicated that Hsp60 could bind to UreA subunit but not UreB. Then, the 3D structure of Hsp60 was modeled using I-TASSER to simulate the binding complex with UreA by molecular docking. The results showed that UreA is a perfect fit for the cavity of Hsp60. Analysis of the resulting model demonstrated that at least seven residues of UreA, located on two interfaces, participate in the interaction. Site-directed mutagenesis of these potential residues showed reduced affinity with Hsp60 than the wild type UreA through surface plasmon resonance (SPR) experiments, and D68 appears to have an important role in the affinity. Further analysis also showed that mutation of E25 and K26 caused a more rapid association and dissociation than with wild UreA, implying that they have roles in stabilizing the interaction complex. These affinity comparisons suggested that the interfaces predicted by molecular docking are credible. Our study indicated a direct interaction between Hsp60 and urease and revealed the binding interfaces and key residues involved in the interaction. These results provide further evidence for the chaperone activity of Hsp60 toward urease and lay a foundation to better understand the maturation mechanism of urease in H. pylori
