523 research outputs found
Immune interactions and heterogeneity in transmission drives the pathogen-mediated invasion of grey squirrels in the UK
Mathematical models highlighted the importance of pathogen-mediated invasion, with the replacement of red squirrels by squirrelpox virus (SQPV) carrying grey squirrels in the UK, a well-known example. In this study, we combine new epidemiological models, with a range of infection characteristics, with recent longitudinal field and experimental studies on the SQPV dynamics in red and grey squirrel populations to better infer the mechanistic basis of the disease interaction. A key finding is that a model with either partial immunity or waning immunity and reinfection, where individuals become seropositive on the second exposure to infection, that up to now has been shown in experimental data only, can capture the key aspects of the field study observations. By fitting to SQPV epidemic observations in isolated red squirrel populations, we can infer that SQPV transmission between red squirrels is significantly (4Ă) higher than the transmission between grey squirrels and as a result our model shows that disease-mediated replacement of red squirrels by greys is considerably more rapid than replacement in the absence of SQPV. Our findings recover the key results of the previous model studies, which highlights the value of simple strategic models that are appropriate when there are limited data, but also emphasise the likely complexity of immune interactions in wildlife disease and how models can help infer disease processes from field data.</p
Integrating robotics into wildlife conservation: testing improvements to predator deterrents through movement
Background Agricultural and pastoral landscapes can provide important habitat for wildlife conservation, but sharing these landscapes with wildlife can create conflict that is costly and requires managing. Livestock predation is a good example of the challenges involving coexistence with wildlife across shared landscapes. Integrating new technology into agricultural practices could help minimize human-wildlife conflict. In this study, we used concepts from the fields of robotics (i.e., automated movement and adaptiveness) and agricultural practices (i.e., managing livestock risk to predation) to explore how integration of these concepts could aid the development of more effective predator deterrents.
Methods We used a colony of captive coyotes as a model system, and simulated predation events with meat baits inside and outside of protected zones. Inside the protected zones we used a remote-controlled vehicle with a state-of-the art, commercially available predator deterrent (i.e., Foxlight) mounted on the top and used this to test three treatments: (1) light only (i.e., without movement or adaptiveness), (2) predetermined movement (i.e., with movement and without adaptiveness), and (3) adaptive movement (i.e., with both movement and adaptiveness). We measured the time it took for coyotes to eat the baits and analyzed the data with a time-to-event survival strategy.
Results Survival of baits was consistently higher inside the protected zone, and the three movement treatments incrementally increased survival time over baseline except for the light only treatment in the nonprotected zone. Incorporating predetermined movement essentially doubled the efficacy of the light only treatment both inside and outside the protected zone. Incorporating adaptive movement exponentially increased survival time both inside and outside the protected zone. Our findings provide compelling evidence that incorporating existing robotics capabilities (predetermined and adaptive movement) could greatly enhance protection of agricultural resources and aid in the development of nonlethal tools for managing wildlife. Our findings also demonstrate the importance of marrying agricultural practices (e.g., spatial management of livestock at night) with new technology to improve the efficacy of wildlife deterrents
Coexistence of hexatic and isotropic phases in two-dimensional Yukawa systems
We have performed Brownian dynamics simulations on melting of two-dimensional
colloidal crystal in which particles interact with Yukawa potential. The pair
correlation function and bond-orientational correlation function was calculated
in the Yukawa system. An algebraic decay of the bond orientational correlation
function was observed. By ruling out the coexistence region, only a unstable
hexatic phase was found in the Yukawa systems. But our work shows that the
melting of the Yukawa systems is a two-stage melting not consist with the KTHNY
theory and the isotropic liquid and the hexatic phase coexistence region was
found. Also we have studied point defects in two-dimensional Yukawa systems.Comment: 9 pages, 8 figures. any comments are welcom
Functionally Heterogenous Macrophage Subsets in the Pathogenesis of Giant Cell Arteritis:Novel Targets for Disease Monitoring and Treatment
Giant cell arteritis (GCA) is a granulomatous large-vessel vasculitis that affects adults above 50 years of age. In GCA, circulating monocytes are recruited to the inflamed arteries. With cues from the vascular microenvironment, they differentiate into macrophages and play important roles in the pathogenesis of GCA via pro-inflammatory cytokine production and vascular remodeling. However, a deeper understanding of macrophage heterogeneity in GCA pathogenesis is needed to assist the development of novel diagnostic tools and targeted therapies. Here, we review the current knowledge on macrophage heterogeneity and diverse functions of macrophage subsets in the pathogenesis of GCA. We next discuss the possibility to exploit their heterogeneity as a source of novel biomarkers and as targets for nuclear imaging. Finally, we discuss novel macrophage-targeted therapies and future directions for targeting these cells in GCA
SARSâCoVâ2 receptor ACE 2 and TMPRSS 2 are primarily expressed in bronchial transient secretory cells
The SARS-CoV-2 pandemic affecting the human respiratory system severely challenges public health and urgently demands for increasing our understanding of COVID-19 pathogenesis, especially host factors facilitating virus infection and replication. SARS-CoV-2 was reported to enter cells via binding to ACE2, followed by its priming by TMPRSS2. Here, we investigate ACE2 and TMPRSS2 expression levels and their distribution across cell types in lung tissue (twelve donors, 39,778 cells) and in cells derived from subsegmental bronchial branches (four donors, 17,521 cells) by single nuclei and single cell RNA sequencing, respectively. While TMPRSS2 is strongly expressed in both tissues, in the subsegmental bronchial branches ACE2 is predominantly expressed in a transient secretory cell type. Interestingly, these transiently differentiating cells show an enrichment for pathways related to RHO GTPase function and viral processes suggesting increased vulnerability for SARS-CoV-2 infection. Our data provide a rich resource for future investigations of COVID-19 infection and pathogenesis
The role of measuring exhaled breath biomarkers in sarcoidosis: A systematic review
Introduction: Sarcoidosis is a chronic granulomatous disease of unknown aetiology with a variable clinical course and prognosis. There is a growing need to identify non-invasive biomarkers to differentiate between clinical phenotypes, identify those at risk of disease progression and monitor response to treatment. Objectives: We undertook a systematic review and meta-analysis, to evaluate the utility of breath-based biomarkers in discriminating sarcoidosis from healthy controls, alongside correlation with existing non-breath based biomarkers used in clinical practice, radiological stage, markers of disease activity and response to treatment. Methods: Electronic searches were undertaken during November 2017 using PubMed, Ebsco, Embase and Web of Science to capture relevant studies evaluating breath-based biomarkers in adult patients with sarcoidosis. Results: 353 papers were screened; 21 met the inclusion criteria and assessed 25 different biomarkers alongside VOCs in exhaled breath gas or condensate. Considerable heterogeneity existed amongst the studies in terms of participant characteristics, sampling and analytical methods. Elevated biomarkers in sarcoidosis included 8-isoprostane, carbon monoxide, neopterin, TGF-ÎČ1, TNFα, CysLT and several metallic elements including chromium, silicon and nickel. Three studies exploring VOCs were able to distinguish sarcoidosis from controls. Meta-analysis of four studies assessing alveolar nitric oxide showed no significant difference between sarcoidosis and healthy controls (2.22ppb; 95% CI -0.83, 5.27) however, a high degree of heterogeneity was observed with an I2 of 93.4% (p<0.001). Inconsistent or statistically insignificant results were observed for correlations between several biomarkers and radiological stage, markers of disease activity or treatment. Conclusions: The evidence for using breath biomarkers to diagnose and monitor sarcoidosis remains inconclusive with many studies limited by small sample sizes and lack of standardisation. VOCs have shown promising potential but further research is required to evaluate their prognostic role
Quercetin prevents progression of disease in elastase/LPS-exposed mice by negatively regulating MMP expression
Abstract Background Chronic obstructive pulmonary disease (COPD) is characterized by chronic bronchitis, emphysema and irreversible airflow limitation. These changes are thought to be due to oxidative stress and an imbalance of proteases and antiproteases. Quercetin, a plant flavonoid, is a potent antioxidant and anti-inflammatory agent. We hypothesized that quercetin reduces lung inflammation and improves lung function in elastase/lipopolysaccharide (LPS)-exposed mice which show typical features of COPD, including airways inflammation, goblet cell metaplasia, and emphysema. Methods Mice treated with elastase and LPS once a week for 4 weeks were subsequently administered 0.5 mg of quercetin dihydrate or 50% propylene glycol (vehicle) by gavage for 10 days. Lungs were examined for elastance, oxidative stress, inflammation, and matrix metalloproteinase (MMP) activity. Effects of quercetin on MMP transcription and activity were examined in LPS-exposed murine macrophages. Results Quercetin-treated, elastase/LPS-exposed mice showed improved elastic recoil and decreased alveolar chord length compared to vehicle-treated controls. Quercetin-treated mice showed decreased levels of thiobarbituric acid reactive substances, a measure of lipid peroxidation caused by oxidative stress. Quercetin also reduced lung inflammation, goblet cell metaplasia, and mRNA expression of pro-inflammatory cytokines and muc5AC. Quercetin treatment decreased the expression and activity of MMP9 and MMP12 in vivo and in vitro, while increasing expression of the histone deacetylase Sirt-1 and suppressing MMP promoter H4 acetylation. Finally, co-treatment with the Sirt-1 inhibitor sirtinol blocked the effects of quercetin on the lung phenotype. Conclusions Quercetin prevents progression of emphysema in elastase/LPS-treated mice by reducing oxidative stress, lung inflammation and expression of MMP9 and MMP12.http://deepblue.lib.umich.edu/bitstream/2027.42/78260/1/1465-9921-11-131.xmlhttp://deepblue.lib.umich.edu/bitstream/2027.42/78260/2/1465-9921-11-131.pdfPeer Reviewe
How Hepatitis D Virus Can Hinder the Control of Hepatitis B Virus
BACKGROUND: Hepatitis D (or hepatitis delta) virus is a defective virus that relies on hepatitis B virus (HBV) for transmission; infection with hepatitis D can occur only as coinfection with HBV or superinfection of an existing HBV infection. Because of the bond between the two viruses, control measures for HBV may have also affected the spread of hepatitis D, as evidenced by the decline of hepatitis D in recent years. Since the presence of hepatitis D is associated with suppressed HBV replication and possibly infectivity, it is reasonable to speculate that hepatitis D may facilitate the control of HBV. METHODOLOGY AND PRINCIPAL FINDINGS: We introduced a mathematical model for the transmission of HBV and hepatitis D, where individuals with dual HBV and hepatitis D infection transmit both viruses. We calculated the reproduction numbers of single HBV infections and dual HBV and hepatitis D infections and examined the endemic prevalences of the two viruses. The results show that hepatitis D virus modulates not only the severity of the HBV epidemic, but also the impact of interventions for HBV. Surprisingly we find that the presence of hepatitis D virus may hamper the eradication of HBV. Interventions that aim to reduce the basic reproduction number of HBV below one may not be sufficient to eradicate the virus, as control of HBV depends also on the reproduction numbers of dual infections. CONCLUSIONS AND SIGNIFICANCE: For populations where hepatitis D is endemic, plans for control programs ignoring the presence of hepatitis D may underestimate the HBV epidemic and produce overoptimistic results. The current HBV surveillance should be augmented with monitoring of hepatitis D, in order to improve accuracy of the monitoring and the efficacy of control measures
- âŠ