2,397 research outputs found

    Spatial and temporal variations in plant water-use efficiency inferred from tree-ring, eddy covariance and atmospheric observations

    Get PDF
    Plant water-use efficiency (WUE), which is the ratio of the uptake of carbon dioxide through photosynthesis to the loss of water through transpiration, is a very useful metric of the functioning of the land biosphere. WUE is expected to increase with atmospheric CO2, but to decline with increasing atmospheric evaporative demand – which can arisefrom increases in near-surface temperature or decreases in relative humidity.We have used Δ13C measurements from tree rings, along witheddy covariance measurements from Fluxnet sites, to estimate thesensitivities of WUE to changes in CO2 and atmospheric humidity deficit.This enables us to reconstruct fractional changes in WUE, based on changes inatmospheric climate and CO2, for the entire period of the instrumental global climate record. We estimate that overall WUE increased from 1900 to2010 by 48 ± 22 %, which is more than double that simulated by thelatest Earth System Models. This long-term trend is largely driven byincreases in CO2, but significant inter-annual variability and regional differences are evident due to variations in temperature and relativehumidity. There are several highly populated regions, such as western Europeand East Asia, where the rate of increase of WUE has declined sharply in thelast 2 decades. Our data-based analysis indicates increases in WUE thattypically exceed those simulated by Earth System Models – implying thatthese models are either underestimating increases in photosynthesis orunderestimating reductions in transpiration

    Laser writing of individual atomic defects in a crystal with near-unity yield

    Full text link
    Atomic defects in wide band gap materials show great promise for development of a new generation of quantum information technologies, but have been hampered by the inability to produce and engineer the defects in a controlled way. The nitrogen-vacancy (NV) color center in diamond is one of the foremost candidates, with single defects allowing optical addressing of electron spin and nuclear spin degrees of freedom with potential for applications in advanced sensing and computing. Here we demonstrate a method for the deterministic writing of individual NV centers at selected locations with high positioning accuracy using laser processing with online fluorescence feedback. This method provides a new tool for the fabrication of engineered materials and devices for quantum technologies and offers insight into the diffusion dynamics of point defects in solids.Comment: 16 pages, 8 figure

    Far-infrared and sub-millimetre imaging of HD 76582's circumstellar disc

    Get PDF
    Debris discs, the tenuous rocky and icy remnants of planet formation, are believed to be evidence for planetary systems around other stars. The JCMT/SCUBA-2 debris disc legacy survey ‘SCUBA-2 Observations of Nearby Stars’ (SONS) observed 100 nearby stars, amongst them HD 76582, for evidence of such material. Here, we present imaging observations by JCMT/SCUBA-2 and Herschel/PACS at sub-millimetre and far-infrared wavelengths, respectively. We simultaneously model the ensemble of photometric and imaging data, spanning optical to sub-millimetre wavelengths, in a self-consistent manner. At far-infrared wavelengths, we find extended emission from the circumstellar disc providing a strong constraint on the dust spatial location in the outer system, although the angular resolution is too poor to constrain the interior of the system. In the sub-millimetre, photometry at 450 and 850 µm reveals a steep fall-off that we interpret as a disc dominated by moderately sized dust grains (amin = 36 µm), perhaps indicative of a non-steady-state collisional cascade within the disc. A disc architecture of three distinct annuli, comprising an unresolved component at 20 au and outer components at 80 and 270 au, along with a very steep particle size distribution (γ = 5), is proposed to match the observations

    On the Computational Complexity of Vertex Integrity and Component Order Connectivity

    Full text link
    The Weighted Vertex Integrity (wVI) problem takes as input an nn-vertex graph GG, a weight function w:V(G)Nw:V(G)\to\mathbb{N}, and an integer pp. The task is to decide if there exists a set XV(G)X\subseteq V(G) such that the weight of XX plus the weight of a heaviest component of GXG-X is at most pp. Among other results, we prove that: (1) wVI is NP-complete on co-comparability graphs, even if each vertex has weight 11; (2) wVI can be solved in O(pp+1n)O(p^{p+1}n) time; (3) wVI admits a kernel with at most p3p^3 vertices. Result (1) refutes a conjecture by Ray and Deogun and answers an open question by Ray et al. It also complements a result by Kratsch et al., stating that the unweighted version of the problem can be solved in polynomial time on co-comparability graphs of bounded dimension, provided that an intersection model of the input graph is given as part of the input. An instance of the Weighted Component Order Connectivity (wCOC) problem consists of an nn-vertex graph GG, a weight function w:V(G)Nw:V(G)\to \mathbb{N}, and two integers kk and ll, and the task is to decide if there exists a set XV(G)X\subseteq V(G) such that the weight of XX is at most kk and the weight of a heaviest component of GXG-X is at most ll. In some sense, the wCOC problem can be seen as a refined version of the wVI problem. We prove, among other results, that: (4) wCOC can be solved in O(min{k,l}n3)O(\min\{k,l\}\cdot n^3) time on interval graphs, while the unweighted version can be solved in O(n2)O(n^2) time on this graph class; (5) wCOC is W[1]-hard on split graphs when parameterized by kk or by ll; (6) wCOC can be solved in 2O(klogl)n2^{O(k\log l)} n time; (7) wCOC admits a kernel with at most kl(k+l)+kkl(k+l)+k vertices. We also show that result (6) is essentially tight by proving that wCOC cannot be solved in 2o(klogl)nO(1)2^{o(k \log l)}n^{O(1)} time, unless the ETH fails.Comment: A preliminary version of this paper already appeared in the conference proceedings of ISAAC 201

    Tawney and the third way

    Get PDF
    From the 1920s to the 1950s R. H. Tawney was the most influential socialist thinker in Britain. He articulated an ethical socialism at odds with powerful statist and mechanistic traditions in British socialist thinking. Tawney's work is thus an important antecedent to third way thinking. Tawney's religiously-based critique of the morality of capitalism was combined with a concern for detailed institutional reform, challenging simple dichotomies between public and private ownership. He began a debate about democratizing the enterprise and corporate governance though his efforts fell on stony ground. Conversely, Tawney's moralism informed a whole-hearted condemnation of market forces in tension with both his concern with institutional reform and modern third way thought. Unfortunately, he refused to engage seriously with emergent welfare economics which for many social democrats promised a more nuanced understanding of the limits of market forces. Tawney's legacy is a complex one, whose various elements form a vital part of the intellectual background to current third way thinking

    High sensitivity of future global warming to land carbon cycle processes

    Get PDF
    Unknowns in future global warming are usually assumed to arise from uncertainties either in the amount of anthropogenic greenhouse gas emissions or in the sensitivity of the climate to changes in greenhouse gas concentrations. Characterizing the additional uncertainty in relating CO2 emissions to atmospheric concentrations has relied on either a small number of complex models with diversity in process representations, or simple models. To date, these models indicate that the relevant carbon cycle uncertainties are smaller than the uncertainties in physical climate feedbacks and emissions. Here, for a single emissions scenario, we use a full coupled climate–carbon cycle model and a systematic method to explore uncertainties in the land carbon cycle feedback. We find a plausible range of climate–carbon cycle feedbacks significantly larger than previously estimated. Indeed the range of CO2 concentrations arising from our single emissions scenario is greater than that previously estimated across the full range of IPCC SRES emissions scenarios with carbon cycle uncertainties ignored. The sensitivity of photosynthetic metabolism to temperature emerges as the most important uncertainty. This highlights an aspect of current land carbon modelling where there are open questions about the potential role of plant acclimation to increasing temperatures. There is an urgent need for better understanding of plant photosynthetic responses to high temperature, as these responses are shown here to be key contributors to the magnitude of future change

    Thermodynamics and heavy quark potential in N_f=2 dynamical QCD

    Get PDF
    We study N_f=2 lattice QCD with nonperturbatively improved Wilson fermions at finite temperature on 16^3 \cdot 8 lattices. We determine the transition temperature at m_{\pi}/m_{\rho} \sim 0.8 and lattice spacing as small as 0.12fm. The string breaking at T < T_c is also studied. We find that the static potential can be fitted by a simple expression involving string model potential at finite temperature.Comment: 6 pages, 6 figures, contribution to Lattice 2002(topology
    corecore