314 research outputs found

    Chain reaction final report

    Get PDF
    Chain Reaction was a three-year project funded by the European Commission. Its key aim was to develop Inquiry Based Science Education (IBSE) across twelve partner countries—United Kingdom, Italy, Slovakia, Turkey, Bulgaria, France, Slovenia, Germany, Greece, Ireland, Jordan, Georgia. The key underpinning element of the project was the development and deployment of interactive and engaging professional development for science teacher educators from each participating country. The science teacher educators involved were introduced to ‘tried and tested’ inquiry-themed science resources and worked collaboratively with project members to gain a clear understanding of the philosophy and mechanisms involved in designing and facilitating inquiry in the science classroom. Once fully cognisant in the use of the resources the science teacher educators, from each partner, designed and delivered a dedicated professional development course for participating science teachers. The specific nature of each professional development event varied from partner to partner but was consistent in its aim to develop participating teachers’ confidence and skills in using the resources with their science students. Following the professional development sessions in each country, science teachers were able to deliver a series of inquiry-based sessions

    Investigating the Physicochemical Property Changes of Plastic Packaging Exposed to UV Irradiation and Different Aqueous Environments

    Get PDF
    A wide range of weathering processes contributes to the degradation of plastic litter items which leads to the formation of microplastics that may be detrimental to marine ecosystems and the organisms inhabiting them. In this study, the impact of UV exposure on the degradation of clear polypropylene (CPP), black polypropylene (BPP), and polyethylene terephthalate (PET) packaging materials was investigated over a period of 6 weeks under dry air conditions representing the terrestrial environment. The exposure was conducted using differently sized and shaped samples at irradiation intensities of 65 W/m2 and 130 W/m2. Results indicated that UV irradiation led to changes in the properties of PET, BPP, and CPP that were proportional to the intensity delivered, leading to a higher level of mass loss, carbonyl indices, crystallinities, and microhardness in all polymer types at 130 W/m2 relative to 65 W/m2. However, material shape and size did not have a significant influence on any property for any of the test materials. Increased mass loss over time was accompanied by considerable increases in carbonyl index (CI) for both PPs. Clear PP (CPP) underwent the most severe degradation, resulting in the highest mass loss, increase in crystallinity, and CI. BPP was less degraded and modified by the UV irradiation than the CPP, indicating that the colorant, carbon black, provided some degree of protection to the bulk polymer material. PET was the least degraded of the three materials, suggesting this polymer type is more resistant to UV degradation. The differences in the degradation behaviours of the three test materials under dry environmental conditions indicate that the UV exposure history of plastic litter might play an important role in its potential for further degradation once it reaches the marine environment. Furthermore, analysis of samples exposed to UV in aqueous media reveals a more irregular set of trends for most material properties measured. Overall, the degree of degradation resulting from UV irradiation in dry environments was more pronounced than in aqueous environments, although the most significant property changes were observed for materials without previous UV exposure histories. Samples with previous UV histories showed higher resistance to further crystallinity changes, which appeared to be due to crosslinking in the pretreatment exposures inhibiting chain alignment into crystalline structures. The effect of solution medium was insignificant, although the presence of water allowed hydrolytic degradation to proceed simultaneously with UV degradation for PET. The reduction of CI in pretreated materials in the aqueous exposures, combined with the mass loss, suggest that the degraded surface layer erodes or products dissolve into surrounding solution medium, leaving a fresh surface of plastic exposed.publishedVersio

    Preliminary Studies into the Environmental Fate of Nitrosamine and Nitramine Compounds in Aquatic Systems

    Get PDF
    AbstractPreliminary hydrolysis and photolysis data are presented for a suite of nitramines and nitrosamines relevant to post combustion CO2 capture using monoethanolamine solvent. Two nitramines (DMNA and MEA-NO2) and the nitrosamine NDELA were resistant to hydrolytic degradation at pH 4, 7 and 9. The nitrosamine NPz was hydrolytically stable at pH 4 and 9, but exhibited ∼30% degradation at pH 7. Nitrosamines appear highly susceptible to photolytic degradation, while nitramines are photolytically stable. The data form part of an ongoing study investigating the fate of nitrosamines and nitramines in terrestrial and aquatic environments

    Biotransformation in water and soil of nitrosamines and nitramines potentially generated from amine-based CO2 capture technology

    Get PDF
    Nitrosamines (NSAs) and nitramines (NAs) are identified as possible degradation products from amine-based post-combustion CO2-capture (PCCC). Selected NSAs and NAs were subjected to aerobic and anaerobic biodegradation studies. In a screening study with 20 μg/L NSAs and NAs at 20 °C, only NSAs and NAs containing hydroxyl groups (alkanol compounds) exhibited aerobic biotransformation >10% after incubation in 28 days. Extending the biodegradation period to 56 days resulted in ≥80% biotransformation of the examined alkanol NSAs and NAs at 20 °C. Biotransformation (20 °C; 56 days) of the NSA NDELA at different concentrations (1–100 μg/L) did not differ significantly, but both water sources and temperatures affected biotransformation of the tested compounds. Anaerobic biotransformation (20 °C; 56 days) occurred rapidly  with alkanol NSAs and NAs, but not with alkyl compounds. Interestingly, 1st order rate coefficients and half-lives indicated comparable or even faster anaerobic than aerobic biotransformation at the same temperature. Predictions of biotransformation pathways suggested that the -OH substituent of alkanol NSAs and NAs was more susceptible to degradation than nitroso- and nitro-substituents.Biotransformation in water and soil of nitrosamines and nitramines potentially generated from amine-based CO2 capture technologyacceptedVersio

    Chemical composition and ecotoxicity of plastic and car tire rubber leachates to aquatic organisms

    Get PDF
    Abstract Synthetic polymer-based materials are ubiquitous in aquatic environments, where weathering processes lead to their progressive fragmentation and the leaching of additive chemicals. The current study assessed the chemical content of freshwater and marine leachates produced from car tire rubber (CTR), polypropylene (PP), polyethylene terephthalate (PET), polystyrene (PS) and polyvinyl chloride (PVC) microplastics, and their adverse effects on the microalgae Raphidocelis subcapitata (freshwater) and Skeletonema costatum (marine) and the Mediterranean mussel Mytilus galloprovincialis. A combination of non-target and target chemical analysis revealed a number of organic and metal compounds in the leachates, including representing plasticizers, antioxidants, antimicrobials, lubricants, and vulcanizers. CTR and PVC materials and their corresponding leachates had the highest content of tentatively identified organic additives, while PET had the lowest. The metal content varied both between polymer leachates and between freshwater and seawater. Notable additives identified in high concentrations were benzothiazole (CTR), phthalide (PVC), acetophenone (PP), cobalt (CTR, PET), zinc (CTR, PVC), lead (PP) and antimony (PET). All leachates, except PET, inhibited algal growth with EC50 values ranging from 0.5% (CTR) and 64% (PP) of the total leachate concentration. Leachates also affected mussel endpoints, including the lysosomal membrane stability and early stages endpoints as gamete fertilization, embryonic development and larvae motility and survival. Embryonic development was the most sensitive parameter in mussels, with EC50 values ranging from 0.8% (CTR) to 65% (PET) of the total leachate. The lowest impacts were induced on D-shell larvae survival, reflecting their ability to down-regulate motility and filtration in the presence of chemical stressors. This study provides evidence of the relationship between chemical composition and toxicity of plastic/rubber leachates. Consistent with increasing contamination by organic and inorganic additives, the leachates ranged from slightly to highly toxic to mussels and algae, highlighting the need for a better understanding of the overall impact of plastic-associated chemicals on aquatic ecosystems

    Status and future recommendations for recording and monitoring litter on the Arctic seafloor

    Get PDF
    Marine litter in the Arctic Basin is influenced by transport from Atlantic and Pacific waters. This highlights the need for harmonization of guidelines across regions. Monitoring can be used to assess temporal and spatial trends but can also be used to assess if environmental objectives are reached, for example, to evaluate the effectiveness of mitigation measures. Seafloor monitoring by trawling needs substantial resources and specific sampling strategies to be sufficiently robust to demonstrate changes over time. Observation and visual evaluation in shallow and deep waters using towed camera systems, remotely operated underwater vehicles, and submersibles are well suited for the Arctic environment. The use of imagery still needs to be adjusted through automation and image analyses, including deep learning approaches and data management, but will also serve to monitor areas with a rocky seafloor. We recommend developing a monitoring plan for seafloor litter by selecting representative sites for visual inspection that cover different depths and substrata in marine landscapes, and recording the litter collected or observed across all forms of seafloor sampling or imaging. We need better coverage and knowledge of status of seafloor litter for the whole Arctic and recommend initiatives to be taken for regions where such knowledge is lacking.publishedVersio

    Status and future recommendations for recording and monitoring litter on the Arctic seafloor

    Get PDF
    Marine litter in the Arctic Basin is influenced by transport from Atlantic and Pacific waters. This highlights the need for harmonization of guidelines across regions. Monitoring can be used to assess temporal and spatial trends but can also be used to assess if environmental objectives are reached, for example to evaluate the effectiveness of mitigation measures. Seafloor monitoring by trawling needs substantial resources and specific sampling strategies to be sufficiently robust to demonstrate changes over time. Observation and visual evaluation in shallow and deep waters using towed camera systems, ROVs and submersibles are well suited for the Arctic environment. The use of imagery still needs to be adjusted through automation and image analyses, including deep learning approaches and data management, but will also serve to monitor areas with a rocky seafloor. We recommend developing a monitoring plan for seafloor litter by selecting representative sites for visual inspection that cover different depths and substrata in marine landscapes, and recording the litter collected or observed across all forms of seafloor sampling or imaging. We need better coverage and knowledge of status of seafloor litter for the whole Arctic and recommend initiatives to be taken for regions where such knowledge is lacking. </jats:p

    Organic chemicals associated with rubber are more toxic to marine algae and bacteria than those of thermoplastics

    Get PDF
    The current study investigated the chemical complexity of fifty plastic (36) and elastomer/rubber (14) methanol extracts from consumer products, focusing on the association with toxicity in two screening assays (bacteria luminescence and marine microalgae). The chemical composition varied considerably between the products and polymers. The most complex sample (car tire rubber) contained 2456 chemical features and the least complex (disposable water bottle) only 39 features, with a median of 386 features across all products. Individual extract toxicity also varied significantly across the products and polymers, with the two toxicity assays showing comparable results in terms of defining low and high toxicity extracts, and correlation between medium toxicity extracts. Chemical complexity and abundance both correlated with toxicity in both assays. However, there were strong differences in toxicity between plastic and elastomer extracts. Overall, 86–93 % of the 14 elastomer extracts and only 33–36 % of other polymer extracts (n = 36) were more toxic than the median. A range of compounds were tentatively identified across the sample set, with several concerning compounds being identified, mostly in the elastomers. While the current focus on plastic chemicals is towards thermoplastics, we show that elastomers may be of more concern from an environmental and human health perspective.publishedVersio
    • …
    corecore