179 research outputs found

    Date of Planting Studies of Winter Wheat and Winter Barley in Relation to Root and Crown Rot Grain Yields and Quality

    Get PDF
    This study was undertaken to determine the nature of root and crown rot of wheat and to ascertain the proper time to plant winter wheat so as to conserve moisture, minimize root and crown rot and thereby maximize yield. Studies conducted for 15 years at several locations in western Nebraska reveal that planting date is a significant factor for higher yields, particularly in certain years

    EFFECTS OF REDUCED TILLAGE AND MULTIPLE CROPPING ON PLANT DISEASES

    Get PDF
    In the past, tillage research on plant diseases was concerned primarily with practices that buried plant residues in single-crop production systems. The burial of plant debris to destroy pathogens is an ancient agricultural prac­ tice (34). Each crop was tested as a single entity, and most crop rotations were based on one crop per year. Interest in notill and conservation tillage systems and mUltiple cropping has increased in the past two decades be­ cause of the scarcity and increased cost of fossil fuels, periodic world food shortages, and the concern over soil erosion (73,110). These concerns are of such paramount importance in many countries that total crop production systems may have to be altered to meet the needs of a rapidly changing world

    The use of an artificial nucleotide for polymerase-based recognition of carcinogenic O6-alkylguanine DNA adducts.

    Get PDF
    Enzymatic approaches for locating alkylation adducts at single-base resolution in DNA could enable new technologies for understanding carcinogenesis and supporting personalized chemotherapy. Artificial nucleotides that specifically pair with alkylated bases offer a possible strategy for recognition and amplification of adducted DNA, and adduct-templated incorporation of an artificial nucleotide has been demonstrated for a model DNA adduct O(6)-benzylguanine by a DNA polymerase. In this study, DNA adducts of biological relevance, O(6)-methylguanine (O(6)-MeG) and O(6)-carboxymethylguanine (O(6)-CMG), were characterized to be effective templates for the incorporation of benzimidazole-derived 2'-deoxynucleoside-5'-O-triphosphates ( BENZI: TP and BIM: TP) by an engineered KlenTaq DNA polymerase. The enzyme catalyzed specific incorporation of the artificial nucleotide BENZI: opposite adducts, with up to 150-fold higher catalytic efficiency for O(6)-MeG over guanine in the template. Furthermore, addition of artificial nucleotide BENZI: was required for full-length DNA synthesis during bypass of O(6)-CMG. Selective incorporation of the artificial nucleotide opposite an O(6)-alkylguanine DNA adduct was verified using a novel 2',3'-dideoxy derivative of BENZI: TP. The strategy was used to recognize adducts in the presence of excess unmodified DNA. The specific processing of BENZI: TP opposite biologically relevant O(6)-alkylguanine adducts is characterized herein as a basis for potential future DNA adduct sequencing technologies

    Acute peripheral immune activation alters cytokine expression and glial activation in the early postnatal rat brain.

    Get PDF
    BACKGROUND:Neuroinflammation can modulate brain development; however, the influence of an acute peripheral immune challenge on neuroinflammatory responses in the early postnatal brain is not well characterized. To address this gap in knowledge, we evaluated the peripheral and central nervous system (CNS) immune responses to a mixed immune challenge in early postnatal rats of varying strains and sex. METHODS:On postnatal day 10 (P10), male and female Lewis and Brown Norway rats were injected intramuscularly with either a mix of bacterial and viral components in adjuvant, adjuvant-only, or saline. Immune responses were evaluated at 2 and 5 days post-challenge. Cytokine and chemokine levels were evaluated in serum and in multiple brain regions using a Luminex multiplex assay. Multi-factor ANOVAs were used to compare analyte levels across treatment groups within strain, sex, and day of sample collection. Numbers and activation status of astrocytes and microglia were also analyzed in the cortex and hippocampus by quantifying immunoreactivity for GFAP, IBA-1, and CD68 in fixed brain slices. Immunohistochemical data were analyzed using a mixed-model regression analysis. RESULTS:Acute peripheral immune challenge differentially altered cytokine and chemokine levels in the serum versus the brain. Within the brain, the cytokine and chemokine response varied between strains, sexes, and days post-challenge. Main findings included differences in T helper (Th) type cytokine responses in various brain regions, particularly the cortex, with respect to IL-4, IL-10, and IL-17 levels. Additionally, peripheral immune challenge altered GFAP and IBA-1 immunoreactivity in the brain in a strain- and sex-dependent manner. CONCLUSIONS:These findings indicate that genetic background and sex influence the CNS response to an acute peripheral immune challenge during early postnatal development. Additionally, these data reinforce that the developmental time point during which the challenge occurs has a distinct effect on the activation of CNS-resident cells

    Kinetics of error generation in homologous B-family DNA polymerases

    Get PDF
    The kinetics of forming a proper Watson–Crick base pair as well incorporating bases opposite furan, an abasic site analog, have been well characterized for the B Family replicative DNA polymerase from bacteriophage T4. Structural studies of these reactions, however, have only been performed with the homologous enzyme from bacteriophage RB69. In this work, the homologous enzymes from RB69 and T4 were compared in parallel reactions to determine the relative abilities of the two polymerases to incorporate correct nucleotides as well as to form improper pairings. The kinetic rates for three different exonuclease mutants for each enzyme were measured for incorporation of an A opposite T and an A opposite furan as well as for the formation of A:C and T:T mismatches. The T4 exonuclease mutants were all ∼2- to 7-fold more efficient than the corresponding RB69 exonuclease mutants depending on whether a T or furan was in the templating position and which exonuclease mutant was used. The rates for mismatch formation by T4 were significantly reduced compared with incorporation opposite furan, much more so than the corresponding RB69 mutant. These results show that there are kinetic differences between the two enzymes but they are not large enough to preclude structural assumptions for T4 DNA polymerase based on the known structure of the RB69 DNA polymerase

    Mutational Specificity of γ-Radiation-Induced Guanine−Thymine and Thymine−Guanine Intrastrand Cross-Links in Mammalian Cells and Translesion Synthesis Past the Guanine−Thymine Lesion by Human DNA Polymerase η†

    Get PDF
    ABSTRACT: Comparative mutagenesis of γ- or X-ray-induced tandem DNA lesions G[8,5-Me]T and T[5-Me,8]G intrastrand cross-links was investigated in simian (COS-7) and human embryonic (293T) kidney cells. For G[8,5-Me]T in 293T cells, 5.8 % of progeny contained targeted base substitutions, whereas 10.0 % showed semitargeted single-base substitutions. Of the targeted mutations, the G f T mutation occurred with the highest frequency. The semitargeted mutations were detected up to two bases 5 ′ and three bases 3 ′ to the cross-link. The most prevalent semitargeted mutation was a C f T transition immediately 5 ′ to the G[8,5-Me]T cross-link. Frameshifts (4.6%) (mostly small deletions) and multiple-base substitutions (2.7%) also were detected. For the T[5-Me,8]G cross-link, a similar pattern of mutations was noted, but the mutational frequency was significantly higher than that of G[8,5-Me]T. Both targeted and semitargeted mutations occurred with a frequency of ∼16%, and both included a dominant G f T transversion. As in 293T cells, more than twice as many targeted mutations in COS cells occurred in T[5-Me,8]G (11.4%) as in G[8,5-Me]T (4.7%). Also, the level of semitargeted single-base substitutions 5 ′ to the lesion was increased and 3 ′ to the lesion decreased in T[5-Me,8]G relative to G[8,5-Me]T in COS cells. It appeared that the majority of the base substitutions at or near the cross-links resulted from incorporation of dAMP opposite the template base, in agreement with the so-called “A-rule”. To determin

    Enzymatic Primer-Extension with Glycerol-Nucleoside Triphosphates on DNA Templates

    Get PDF
    selection. Template-dependent GNA synthesis is essential to any GNA-based selection system.In this study, we investigated the ability of various DNA polymerases to use glycerol-nucleoside triphosphates (gNTPs) as substrates for GNA synthesis on DNA templates. Therminator DNA polymerase catalyzes quantitative primer-extension by the incorporation of two glyceronucleotides, with much less efficient extension up to five glyceronucleotides. Steady-state kinetic experiments suggested that GNA synthesis by Therminator was affected by both decreased catalytic rates and weakened substrate binding, especially for pyrimidines. In an attempt to improve pyrimidine incorporation by providing additional stacking interactions, we synthesized two new gNTP analogs with 5-propynyl substituted pyrimidine nucleobases. This led to more efficient incorporation of gC, but not gT.We suggest that directed evolution of Therminator might lead to mutants with improved substrate binding and catalytic efficiency
    corecore