19 research outputs found

    Development of nominal rules on the Fuzzy Sugeno method to determine the quality of power transformer insulation oil using Dissolved Gas Analysis data

    Get PDF
    This paper aims to develop the nominal rules on the Fuzzy Logic Method using the Sugeno-Fuzzy Inference System (FIS) for Dissolved Gas Analysis (DGA) and determine the quality of the power Transformer 1 and Transformer 6 insulating oil at the Buduran 150 kV substation. The nominal number of proposed fuzzy rules is 1920 rules. Implementing the Fuzzy-Sugeno method on Transformers 1 and 6 shows that the six input variables from the DGA test can produce a Total Dissolved Combustible Gas (TDCG) output value of 32.67 and 26.19 ppm, respectively. Both values indicate that the insulating oil of Transformers 1 and 6 are in condition one and, at the same time, indicates that the dissolved gas composition is in Normal status. Furthermore, the TDCG value, condition, and quality status of the insulating oil have the same or 100 % accuracy compared to the DGA test by PLN (UPT Surabaya). Thus, the nominal development of fuzzy rules using the Fuzzy-Sugeno method can perform DGA analysis more accurately to determine the quality of power transformer insulation oil compared to previous studies

    Development of nominal rules on the Fuzzy Sugeno method to determine the quality of power transformer insulation oil using Dissolved Gas Analysis data

    Get PDF
    This paper aims to develop the nominal rules on the Fuzzy Logic Method using the Sugeno-Fuzzy Inference System (FIS) for Dissolved Gas Analysis (DGA) and determine the quality of the power Transformer 1 and Transformer 6 insulating oil at the Buduran 150 kV substation. The nominal number of proposed fuzzy rules is 1920 rules. Implementing the Fuzzy-Sugeno method on Transformers 1 and 6 shows that the six input variables from the DGA test can produce a Total Dissolved Combustible Gas (TDCG) output value of 32.67 and 26.19 ppm, respectively. Both values indicate that the insulating oil of Transformers 1 and 6 are in condition one and, at the same time, indicates that the dissolved gas composition is in Normal status. Furthermore, the TDCG value, condition, and quality status of the insulating oil have the same or 100 % accuracy compared to the DGA test by PLN (UPT Surabaya). Thus, the nominal development of fuzzy rules using the Fuzzy-Sugeno method can perform DGA analysis more accurately to determine the quality of power transformer insulation oil compared to previous studies

    Recloser Placement on Distribution System Reliability at PT. PLN (Persero) City of Subulussalam Aceh

    Get PDF
    Security of the electric power distribution system is one element of service fulfillment. The automatic return breaker or recloser is one of the 20 kV Medium Voltage Air Line safety equipment which functions to anticipate momentary disturbances so that power outages can be anticipated, the current use of electricity has expanded to almost all regions. The 20 kV distribution network often experiences disturbances both externally and internally. External disturbances are in the form of surges caused by lightning, tree branches or twigs that are exposed to the transmission line, while internal disturbances are caused by circuit breakers due to the opening and closing of circuit breakers. Interference can be temporary or permanent. Temporary interference will disappear by itself, while permanent interference requires the operator to neutralize the interference. Based on the results of the analysis of recloser placement in the distribution channel at PT. PLN (Persero) Subulussalan PK Calendar can be calculated in comparison using SAIDI, SAIFI, and FITNES. The results obtained after calculating the placement of the recloser in the front transformer position of the Koramil Sp Left with SAIDI values (0.287), and SAIFI (0.000517) and FITNES values (746268.657)

    The Analysis of high-Voltage Electric Field Stress in Lp and Ls coils of Tesla Transformer for studying the efficiency design

    Get PDF
    This article presents The Analysis for high-Voltage Electric Stress in Lp and Ls coils of Tesla Transformer for studying the efficiency design. The tesla transformer is designed at 350kV rating Voltage and 120 kHz resonant frequency.This article presents The Analysis for high-Voltage Electric Stress in Lp and Ls coils of Tesla Transformer for studying the efficiency design. The tesla transformer is designed at 350kV rating Voltage and 120 kHz resonant frequency. The effect of high voltage when we designed the coil has impact to Electric Stress between primary and secondary coil because the tesla transformer uses air core. The insulator of coil also has problem on the reason as flashover on the 2 coils. The best dimension among coil has to present in this paper by using optimal mathematical solution. The simulation results show performance of the solution and ensure the methodology with positive way

    An Alternative Perturbation and Observation Modifier Maximum Power Point Tracking of PV Systems

    No full text
    Under the current situation, it is necessary to harness solar energy to generate more electricity. However, the disadvantage of solar energy is that it takes a lot of space to install solar panels. An option to optimize PV systems is to improve the maximum power point tracking (MPPT) algorithm based on symmetrical management has the advantage of being easy to use without updating the devices. The improved algorithm achieves symmetry between the maximum power point (MPP) and the output of the PV array, resulting in less power loss and increased system efficiency. This paper presents the MPPT of photovoltaic using the current control modifier perturbation and observation plus fuzzy logic control (CCMP&O−FLC MPPT). The algorithm of CCMP&O−FLC MPPT is applied to reduce the setting time and to reduce oscillation around the set-point at a steady state. This concept was experimented with using a boost converter with MATLAB/Simulink software package and implemented by STM32F4VGA microcontroller. The simulation and experiment results are obtained by comparison with traditional P&O under similar operating conditions. The CCMP&O−FLC MPPT can track MPP faster when the irradiation is rapidly changing and, therefore, can reduce the PV system losses. In addition, the advantages of this proposed method can also be applied to improve the performance of existing systems without modifying existing equipment, unlike modern methods that cannot be applied to older systems. The results showed that the MPPT time and the power output efficiency of the proposed algorithm were 146 milliseconds and 99.5%, respectively

    Improving Energy Management through Demand Response Programs for Low-Rise University Buildings

    No full text
    Recently, energy costs have increased significantly, and energy savings have become more important, leading to the use of different patterns to align with the characteristics of demand-side load. This paper focused on the energy management of low-rise university buildings, examining the demand response related to air conditioning and lighting by measuring the main parameters and characteristics and collecting and managing the data from these parameters and characteristics. This system seeks to control and communicate with the aim of reducing the amount of peak energy using a digital power meter installed inside the main distribution unit, with an RS-485 communication port connected to a data converter and then displayed on a computer screen. The demand response and time response were managed by power management software and an optimization model control algorithm based on using a split type of air conditioning unit. This unit had the highest energy consumption in the building as it works to provide a comfortable environment based on the temperatures inside and outside the building. There was a renewable energy source that compensated for energy usage to decrease the peak load curve when the demand was highest, mostly during business hours. An external power source providing 20 kWh of solar power was connected to an inverter and feeds power into each phase of the main distribution. This was controlled by an energy power management program using a demand response algorithm. After applying real-time intelligent control demand-side management, the efficient system presented in this research could generate energy savings of 25% based on AC control of the lighting system. A comparison of the key system parameters shows the decrease in power energy due to the use of renewable energy and the room temperature control using a combination of split-type air conditioning

    Analysis of Ferroresonance Phenomenon in 22 kV Distribution System with a Photovoltaic Source by PSCAD/EMTDC

    Get PDF
    Overvoltage and overcurrent in the middle voltage (MV) 22 kV and low voltage (LV) 0.4 kV distribution network with photovoltaic (PV) rooftop system of the Provincial Electricity Authority of Thailand (PEA) have been investigated in order to show that these unwanted situations are caused by the ferroresonance phenomenon. This information would be useful to improve a better solution for the system protection when PV rooftops are integrated into the PEA distribution system. The software tool, PSCAD/EMTDC is used to study the overvoltage at the high side of open-delta and open-wye distribution transformer- and overcurrent at the low side of distribution transformer linked to the grid system via three single-phase fuse cutouts. The ferroresonance phenomenon can be observed when the PV rooftop system is linked to the low voltage side of the distribution transformer via three single-phase fuse cutouts. The results show a good similarity with the results from the simulation of the MV side and LV side of distribution transformers. Finally, the physical phenomena described to the overvoltage, overcurrent, and the destruction of the distribution transformer and other apparatus in load customers will occur when the system consists of the PV rooftop source, capacitance in long transmission line, nonlinear distribution transformer with saturation characteristic and the usage of single-phase switching cutouts in the system

    Improving Energy Management through Demand Response Programs for Low-Rise University Buildings

    No full text
    Recently, energy costs have increased significantly, and energy savings have become more important, leading to the use of different patterns to align with the characteristics of demand-side load. This paper focused on the energy management of low-rise university buildings, examining the demand response related to air conditioning and lighting by measuring the main parameters and characteristics and collecting and managing the data from these parameters and characteristics. This system seeks to control and communicate with the aim of reducing the amount of peak energy using a digital power meter installed inside the main distribution unit, with an RS-485 communication port connected to a data converter and then displayed on a computer screen. The demand response and time response were managed by power management software and an optimization model control algorithm based on using a split type of air conditioning unit. This unit had the highest energy consumption in the building as it works to provide a comfortable environment based on the temperatures inside and outside the building. There was a renewable energy source that compensated for energy usage to decrease the peak load curve when the demand was highest, mostly during business hours. An external power source providing 20 kWh of solar power was connected to an inverter and feeds power into each phase of the main distribution. This was controlled by an energy power management program using a demand response algorithm. After applying real-time intelligent control demand-side management, the efficient system presented in this research could generate energy savings of 25% based on AC control of the lighting system. A comparison of the key system parameters shows the decrease in power energy due to the use of renewable energy and the room temperature control using a combination of split-type air conditioning

    An Alternative Low-Cost Embedded NILM System for Household Energy Conservation with a Low Sampling Rate

    No full text
    The measurement of the energy consumption of electrical appliances, where the meter is installed at a single point on the main input circuit of the building, is called non-intrusive load monitoring (NILM). The NILM method can distinguish the loads that are currently active and break down how the loads consume electricity. A microcontroller with embedded software was selected to read the data into the NILM method process at a low sampling rate every 1 s or 1 Hz. The measured data and the data obtained by the NILM algorithm were displayed via an internet platform. This article presents an alternative low-cost embedded NILM system for household energy conservation with a low sampling rate, which could identify electrical appliances such as an air conditioner, refrigerator, television, electric kettle, electric iron, microwave oven, rice cooker, and washing machine. Four features of symmetry pattern were extracted, containing information on the value of active power change, the value of reactive power change, the number of intersection points between the active power data and the reference line, and an estimation of an equation for the starting characteristics of the electrical equipment. The proposed NILM system was tested in a selected test house that used a single-phase power system. A typical meter was also installed to compare the results with the proposed NILM. The validity of the tests was checked for 1 month in 3 houses to analyze the results. The proposed method was able to detect 91.3% of total events. The accuracy of the average ability of the system to disaggregate devices was 0.897. The accuracy value for total power consumption was 0.927. The continuous data recording of the NILM method provides information on the behavior of electrical appliances that can be used for maintenance and warnings
    corecore