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Abstract: Overvoltage and overcurrent in the middle voltage (MV) 22 kV and low voltage (LV) 0.4 kV
distribution network with photovoltaic (PV) rooftop system of the Provincial Electricity Authority of
Thailand (PEA) have been investigated in order to show that these unwanted situations are caused by
the ferroresonance phenomenon. This information would be useful to improve a better solution for
the system protection when PV rooftops are integrated into the PEA distribution system. The software
tool, PSCAD/EMTDC is used to study the overvoltage at the high side of open-delta and open-wye
distribution transformer- and overcurrent at the low side of distribution transformer linked to the
grid system via three single-phase fuse cutouts. The ferroresonance phenomenon can be observed
when the PV rooftop system is linked to the low voltage side of the distribution transformer via three
single-phase fuse cutouts. The results show a good similarity with the results from the simulation of
the MV side and LV side of distribution transformers. Finally, the physical phenomena described to
the overvoltage, overcurrent, and the destruction of the distribution transformer and other apparatus
in load customers will occur when the system consists of the PV rooftop source, capacitance in long
transmission line, nonlinear distribution transformer with saturation characteristic and the usage of
single-phase switching cutouts in the system.

Keywords: ferroresonance; PV Rooftop system; PSCAD/EMTDC

1. Introduction

Ferroresonance is a special kind of resonance that occurs in the network with nonlinear elements,
especially in transformers. When nonlinear inductance of the transformer core and the capacitance
of the network are equal, ferroresonance happens. This equality can occur when the transformer is
accidentally energized and de-energized in only one or two phases. Ferroresonance results in a high
current and voltage across the inductance core and leads to the damage of the transformer as shown in
Figure 1. There are a lot of articles in the literature which have discussed this phenomenon, for instance,
References [1–8], and numerous simulation results of the possible ferroresonance happening in the
high voltage side of the distribution network have been reported in References [9–12]. Gonen T.
reported that ferroresonance is a transient phenomenon caused by the interaction of system capacitance
with the nonlinear inductance of the transformer, energy source, and limited power losses [13].
However, Garikoitz B., et al. showed that the influence of ferroresonance is not only limited to the
cable capacitance consideration, but also to several constructive, design, operation, and protective
parameters [14]. There are a lot of ferroresonances in the configuration of distribution transformers.
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In 2003, Jacobson D.A.N. determined that seven different types of electrical systems are affected by
ferroresonance phenomena [15].
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Figure 1. The transformer explosion caused in middle voltage (MV) [16].

This phenomenon has been considered and concentrated by the large-scale electricity generators
that produce and distribute energy to the end user. Nowadays, electricity is not only produced
by large-scale producers but also by the small-scale end users. The development of the electricity
generation technology and energy policies together with the environmental crisis have persuaded
the end users to produce electricity from renewable energy by themselves. Therefore, ferroresonance
caused by energizing and de-energizing transformers which are connected to these small-scale
electricity producers must be of concern.

One of the small-scale electricity generation systems from renewable energy is the photovoltaic
(PV) system, which directly converts solar energy into electricity. It is one of the significant and
clean sources of renewable energy. In the year 2012, Thailand has successfully installed nearly
2300 MW of solar energy, 99 percent of which is in the form of commercially centralized installations
(solar farms), while the housing-sized solar PV (solar rooftop) shares a very small percentage [17,18].
However, according to the explosive growth of urbanization in Thailand, which increases every year
(approximately 1.6 percent per year [17]), the usage of rooftop solar energy dramatically increased.
In contrast with this growth, the information about the end users that can produce electricity is not fully
known by the provincial electricity authority of Thailand (PEA), which is the main electricity distributor
in Thailand. Therefore, ferroresonance phenomena from accidentally energizing and de-energizing the
distribution transformer should be awarded and concentrated. The study in Reference [19] confirmed
that ferroresonance does exist in the power transformer, which is connected to the PV system. However,
the complete distribution network is not considered. Moreover, the analysis of the ferroresonance
effect on the load is still not considered. With more information on ferroresonance in distribution
systems with PV systems connected to it, the PEA will be aware of the effect of this phenomenon on
the transformers and the power qualities [20–29].

Based on these facts, the simulation-based study of the ferroresonance effects in the distribution
network with PV system sources will be presented in this paper. The major contribution of this work
is the analysis of the type of ferroresonance that occurs in systems together with its effect on the
system. The frequency analysis technique known as the Fast Furrier Transformation (FFT) will be
used to distinguish the type of ferroresonance in the frequency domain. After the introduction in the
first part, the organization of this paper is arranged in 4 parts. In the second part, the preliminary
and Theory of ferroresonance will be presented. System modeling and the simulation results will be
mentioned, analyzed and discussed in the third and fourth part, respectively. Finally, the conclusion
will be addressed in the last part.
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2. Preliminary and Theory

2.1. Ferroresonance in the Transformer

There are basically four different ferroresonance modes that can happen in a power system,
that is, the fundamental mode, the subharmonic mode, the quasi-periodic mode and the chaotic mode,
as shown in Figure 2.
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• Fundamental mode

The signal has the same period as the power system (T). The frequency spectrums consist of the
fundamental frequency component followed by the decreasing magnitude of the n-th odd harmonic.

• Subharmonic

The signal has a period which is a multiple of the source period (nT). The frequency spectrums
consist of the fundamental frequency component followed by the decreasing contents of the
n-th subharmonic.

• Quasi-periodic

The signal is not periodic but has the repetitive pattern. The frequency spectrums are
discontinuous and defined as n f1 + m f2, where n and m are integers.

• Chaotic

The signal is not periodic and the frequency spectrums are continuous.
In order to achieve the analytical solution of ferroresonance, the simplified equivalent circuit of the

transformer, which consists of a nonlinear inductance, equivalent capacitance, equivalent resistance,
and energy source, is considered as shown in Figure 3.
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Figure 3. The equivalent circuit of the transformer for ferroresonance analysis.

Suppose that the magnetization curve of the nonlinear inductance is represented in Figure 4,
therefore, this curve can be approximated by the nth-order polynomial

iL = aφ + bφn (1)

where iL is a magnetizing current, φ is a magnetic flux in the transformer core, a is a coefficient of
the linear term that corresponds to unsaturated magnetizing inductance and b is a coefficient of the
nonlinear term.
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The analytical solution of ferroresonance in Figure 3 can be achieved by the harmonic balance
method. The differential equation for the flux linkage with the magnetization curve approximated by
Equation (1) is presented by

d2φ

dt2 +
1

RC
dφ

dt
+

1
C
(aφ + bφn) = ωsE cos ωst (2)
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In order to achieve the steady-state flux φ by the harmonic balance method, a simplified version
of Equation (2) can be written in the form of Duffin’s equation [31,32]

d2φ

dt2 +
1

RC
dφ

dt
+ ω2

0φ + ω2
2φn = ωsE cos ωst (3)

where ω0 =
√

a
C and ω2 =

√
b
C .

For the fundamental mode (n = 1, 3, 5, . . .), the steady-state solution of Equation (2) is written in
the form

φ = Φ sin(ωst + θ) = Φx sin ωst + Φy cos ωst (4)

where Φ =
√

Φ2
x + Φ2

y and θ = tan−1
(

Φy
Φx

)
.

We substitute Equation (4) into Equation (2) and apply the approximation of term
sinn(ωst + θ) with

sinn(ωst + θ) ∼= k1 sin(ωst + θ) (5)

where k1 = (−1)n−1

2n−2

(
n

n−1
2

)
.

Then when we equate the sin ωst term and neglect cos ωst with the higher order terms,
the following equations are obtained:

[−(ω2
s − ω2

0) + k1ω2
2Φn−1]Φx −

( ωs

RC

)
Φy = 0 (6)

[−(ω2
s − ω2

0) + k1ω2
2Φn−1]Φy +

( ωs

RC

)
Φx = ωsE (7)

When Equations (6) and (7) are solved for the coefficients Φx, Φy, the solution of Equation (4)
can be obtained. Finally, the solution for the other modes of ferroresonance can be achieved with
similar procedures.

Ferroresonance can be explained by using a graphical approach. Consider the V-I characteristics
of inductance and capacitance, as shown in Figure 5.
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Since the inductive reactance of the transformer core consists of two regions, linear and nonlinear
characteristics, the possible operation points are obtained as the intersection of VL and VS + VC are
as follows:

• Point 1 is a stable non-ferroresonance mode. At this point, the circuit is working with the inductive
mode and remains there in the steady-state.

• Point 2 is a stable ferroresonance mode. At this point, the circuit is working with the inductive
mode with both high voltage and current. This solution also remains there in the steady-state.

• Point 3 is an unstable mode and the solution will not remain there in the steady-state.

2.2. The Distribution Transformer under the Emerged or De-Energized Modes

The delta and wye transformer connection with energy sources is modeled in the form of an
inductor and capacitor network as shown in Figure 6a,b, respectively. These capacitors exist in the
underground cables or the overhead power lines with respect to earth. Whereas the inductors represent
the magnetizing inductance of the transformers.
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From the connection scheme in Figure 6, the series circuit of the capacitor, inductor and supply
source is used for analyzing the ferroresonance in each phase, as shown in Figure 7.
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3. System Modeling for Simulation

In this section, the modeling of the distribution system with a PV connected system is arranged.
Since an experiment with ferroresonance is a destructive experiment, the demonstration is simulated
using the PSCAD/EMTDC software. In this study, three different cases are considered.

3.1. The System Under Considering

The system consists of a local load of the PEA network. Through the 22 kV distribution system,
the local load has 3 transformers (one unit of 1 MVA and two units of 500 kVA) for condos, suburban
homes and townhouses, and suburban homes with total installed PV rooftops, respectively. The total
500 kW installation capacity of the PV rooftop system consists of a PV array with Maximum Power
Point Tracking (MPPT) and the simplified inverter without the anti-islanding system. The produced
energy is incorporated into the 22 kV grid through the step-up transformer. The distribution line to the
system consists of two underground cables of 20-km length and a PI transmission line section of 200-m
length. Moreover, there are three cutout switches at every connection line, as shown in Figure 8.
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3.2. Simulation Case I: The Effect of Ferroresonance on the High Voltage (HV) Side of the
Distribution Transformer

The purpose of Case I is to consider the effect that ferroresonance causes due to the connection
of a 1 MVA and 500 kVA transformers to a PV system. The single line diagram of this case is shown
in Figure 9 and its corresponding series inductance and capacitance (LC) ferroresonance circuit is
modeled in Figure 10. Moreover, the required parameters and data are summarized in Table 1.
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Figure 10. The series LC ferroresonance circuit for Case I.
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Table 1. The parameters for simulation Case I.

Name Parameter Value

Vgrid
Base MVA (3 phase) 10 MVA

Base voltage (L-L, RMS) 32 kV
Base frequency 50 Hz

Cable 1
Steady-state frequency 50 Hz

Segment length 20 km

Cable 2
Steady-state frequency 50 Hz

Segment length 20 km

T1

Transformer MVA 500 kVA
Primary voltage 22 kV

Secondary voltage 0.4 kV
Type: Delta-Wye ground
Base operation frequency 50 Hz

T2

Transformer MVA 1 MVA
Primary voltage 22 kV

Secondary voltage 0.4 kV
Type: Delta-Wye ground
Base operation frequency 50 Hz

Load 1 Customer Load 1 0.01 MW + 0.005 MVAR per phase
Load 2 Customer Load 2 0.01 MW + 0.005 MVAR per phase

Three single-phase circuit breakers (BRK) are connected with underground cables (BRKL01_1,
BRKL01_2, BRKL01_3, BRKL02_1, BRKL02_2, and BRKL02_3). The measuring equipment is
represented by VT01a, VT01b, VT01c, VT02a, VT02b, and VT02c. Single-phase circuit breakers are
consequently switched from phase C, A and B for de-energization. After that, they are switched from
phase B, A and C for energization.

3.3. Simulation Case II and Case III: The Impact of the PV Rooftop System on the Distribution Transformer and
Suburban Homes

The purpose of Case II is to consider the effect of ferroresonance that is caused by the cuts in the
PV system at the interconnection transformers 500 kVA LV and suburban home sides. The purpose of
Case III is to consider the effect of ferroresonance that is caused by the cuts in the PV system at the
interconnection transformer 500 kVA LV side with the increasing installation capacity of the PV system
step by step and to observe the effects of the change. The single line diagram for expressing these
two cases is shown in Figure 11 and its corresponding series LC ferroresonance circuit is modeled in
Figure 12. Additionally, the required parameters and data are summarized in Table 2.

Energies 2018, 11, x FOR PEER REVIEW  10 of 24 

 

 

Figure 11. The single line diagram of a PV rooftop system with a 500 kVA transformer and a light 
load connected. 

A B C

R
=

0

XC

XC

XC

XM

XM

XM

Vpv

 
Figure 12. The series LC ferroresonance circuit for Cases II and III. 

Three single-phase circuit breakers are connected with the transmission line PI section (BRKA, 
BRKB, and BRKC). The measuring equipment is represented by Ea, Eb, Ec, Ia, Ib, Ic, VLoad and ILoad. 
Single-phase circuit breakers are consequently switched from phase B, C and A for de-energization. 
After that, they are switched from phase A, C and B for energization. 

4. Simulation Results and Discussion 

The simulation results from the model in Section 3 are considered, analyzed and discussed in 
this section. 

4.1. Case I: The Ferroresonance Effect on the 500 kVA and 1 MVA Transformer with Condos, Suburban and 
Town House Loads 

For Case I, the single-phase de-energization and energization at BRKL01 and BRKL02 illustrate 
the ferroresonance overvoltage of the 1 MVA and 500 kVA transformers. The simulation results also 
show that the overvoltage occurs between 0.25–0.7 s as seen in Figures 13 and 14, respectively. 

G
T

+

2
0

.0
 [m

F
]

2

I D

D
2

I

D
2

I

D
2

I

D
2

I

D
2

I

800.0

30.0

Ga1

Ga2

Gb1

Gb2

Gc1

Gc2

D

sb Vboost

500 [uH]

500 [uH]

500 [uH]

1
0

.0
 [m

F
]

1
0

.0
 [m

F
]

1
0

.0
 [m

F
]

BRKA

BRKB

BRKC

Isa

Isb

Isc

P+jQ
0.01 [MW] /ph
0 [MVAR] /ph

IL
o

a
d

VLoad

A

B

C

A

B

C

COUPLED
PI

SECTION

A

B

C

3
 P

h
a

se
R

M
S

3 Phase RMS

a V
A

Ea

Eb

Ia

Ib

Ic
BRK3Vabc

Ec

A

B

C

A

B

C

#2 #1

0.4 [kV]
22.0 [kV]

500 [kVA]
umec

Figure 11. The single line diagram of a PV rooftop system with a 500 kVA transformer and a light
load connected.
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Figure 12. The series LC ferroresonance circuit for Cases II and III.

Table 2. The parameters for simulation Cases II and III.

Name Parameter Value

PV module data

Ref. irradiance 1000 W/m2

Ref. Temperature 25 ◦C
Effective area per cell 0.01 m2

Series resistance per cell 0.02 Ω
Shunt resistance per cell 1000 Ω

Diode ideality factor 1.5
Band gap energy 1.103 eV

Saturation current at reference conditions per cell 1 × 10−12 kA
Short circuit current at the ref. conditions per cell 0.0025 kA

Temperature Coefficient of photocurrent 0.001 A/K

Coupled PI Section Line Rated Frequency 50 Hz
Line Length 0.2 km

T3

Transformer MVA 500 kVA
Primary voltage 0.4 kV

Secondary voltage 22 kV
Type: Wye ground—Delta
Base operation frequency 50 Hz

Load 3 Customer Load 3 0.01 MW per phase

Three single-phase circuit breakers are connected with the transmission line PI section (BRKA,
BRKB, and BRKC). The measuring equipment is represented by Ea, Eb, Ec, Ia, Ib, Ic, VLoad and ILoad.
Single-phase circuit breakers are consequently switched from phase B, C and A for de-energization.
After that, they are switched from phase A, C and B for energization.

4. Simulation Results and Discussion

The simulation results from the model in Section 3 are considered, analyzed and discussed in
this section.

4.1. Case I: The Ferroresonance Effect on the 500 kVA and 1 MVA Transformer with Condos, Suburban and
Town House Loads

For Case I, the single-phase de-energization and energization at BRKL01 and BRKL02 illustrate
the ferroresonance overvoltage of the 1 MVA and 500 kVA transformers. The simulation results also
show that the overvoltage occurs between 0.25–0.7 s as seen in Figures 13 and 14, respectively.
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Figure 13. The ferroresonance overvoltage at the HV side transformer 1 MVA.
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Figure 14. The ferroresonance overvoltage at the HV side transformer 500 kVA.

However, ferroresonance does not occur when the distribution transformer is not in the
saturation region and the three-phase circuit breaker is connected and disconnected at the same
time. These characteristics are shown in Figures 15 and 16, respectively.
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Figure 15. The three-phase circuit breaker disconnecting and connecting without the saturation
transformer 1 MVA at the HV side.
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Figure 16. The three-phase circuit breaker disconnecting and connecting without the saturation
transformer 500 kVA at the HV side.

4.2. Case II: The Ferroresonance Effect on the 500 kVA Transformer LV Side with Suburban Home Load and the
Total 500 kW Installation Capacity of PV Rooftop Systems

In Case II, the de-energization and energization in the phase by phase scheme are illustrated.
First, the BRKB opens at 0.3 s. The corresponding phase voltage and current are shown in Figure 17.
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Figure 17. The voltage and current at the LV side (0.4 kV) transformer 500 kVA when the BRKB open
circuit is at 0.3 s.
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The frequency analysis results is shown in Figure 17. The corresponding frequency spectrums are
obtained as shown in Figure 18.Energies 2018, 11, x FOR PEER REVIEW  13 of 24 
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Figure 18. The frequency spectrums of the phase voltage and current at the LV side (0.4 kV) transformer
500 kVA when the BRKB open circuit is at 0.3 s.

From the results in Figures 17 and 18, it is clearly seen that phase A and C are affected by the
ferroresonance. Their voltage consists of the fundamental mode ferroresonance while the current
consists of the combination of fundamental mode and quasi-periodic mode ferroresonances.

Secondly, a phase C is consequently disconnected by opening BRKC at time 0.4 s.
The corresponding phase voltage and current are shown in Figure 19.
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Figure 19. The voltage and current at the LV side (0.4 kV) transformer 500 kVA when the BRKC open
circuit is at 0.4 s.

The frequency analysis of the results is shown in Figure 19. The corresponding frequency
spectrums are obtained as shown in Figure 20.
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Figure 20. The frequency spectrums of the phase voltage and current at the LV side (0.4 kV) transformer
500 kVA when the BRKC open circuit is at 0.4 s.
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From the results in Figures 19 and 20, it can be clearly seen that only phase A is affected by
ferroresonance. Its voltage consists of fundamental mode ferroresonance while the current consists of
the combination of fundamental mode and quasi-periodic mode ferroresonances.

Finally, phase A is disconnected by opening BRKA at time 0.5 s. The corresponding phase voltage
and current are shown in Figure 21.
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Figure 21. The voltage and current at the LV side (0.4 kV) transformer 500 kVA when the BRKA open
circuit is at 0.5 s.

The corresponding frequency spectrums of Figure 21 are obtained and shown in Figure 22.
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Figure 22. Cont.
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Figure 22. The frequency spectrums of the phase voltage and current at the LV side (0.4 kV) transformer
500 kVA when the BRKA open circuit is at 0.5 s.

From the results in Figures 21 and 22, the voltage and current of all phases are not affected
by ferroresonance.

After all the circuit breakers are disconnected, the connection characteristics of each phase are
considered. First, the BRKA is closed at 0.6 s. The corresponding phase voltage and current are shown
in Figure 23.
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Figure 23. The voltage and current at the LV side (0.4 kV) transformer 500 kVA when the BRKA close
circuit is at 0.6 s.
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The corresponding frequency spectrums of Figure 23 are obtained and shown in Figure 24.
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Figure 24. The frequency spectrum of the phase voltage and current at the LV side (0.4 kV) transformer
500 kVA when the BRKA close circuit is at 0.6 s.

From the results in Figures 23 and 24, only phase A is affected by the ferroresonance. Its voltage
consists of the fundamental mode ferroresonance while the current consists of the combination of the
fundamental mode and quasi-periodic mode ferroresonances.

Second, the BRKC is closed at 0.7 s. This connection yields the voltage and current as shown in
Figure 25.
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Figure 25. Cont.
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Figure 25. The voltage and current at the LV side (0.4 kV) transformer 500 kVA when the BRKC close
circuit is at 0.7 s.

The corresponding frequency spectrums of Figure 25 using FFT are shown in Figure 26.
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Figure 26. The frequency spectrums of the phase voltage and current at the LV side (0.4 kV) transformer
500 kVA when the BRKC close circuit is at 0.7 s.
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From the results in Figures 25 and 26, phase A and phase C are affected by ferroresonance.
Their voltage consists of the fundamental mode ferroresonance while their current consists of
a combination of the fundamental mode and quasi-periodic mode ferroresonances.

Finally, the BRKB is closed at 0.8 s. This connection yields the voltage and current as shown in
Figure 27.
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Figure 27. The voltage and current at the LV side (0.4 kV) transformer 500 kVA when the BRKB close
circuit is at 0.8 s.

The corresponding frequency spectrums of Figure 27 using FFT are shown in Figure 28.
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Figure 28. Cont.



Energies 2018, 11, 1742 20 of 24

Energies 2018, 11, x FOR PEER REVIEW  20 of 24 

 

  
(b) Phase B 

  
(c) Phase C 

Figure 28. The frequency spectrums of the phase voltage and current at the LV side (0.4 kV) 
transformer 500 kVA when the BRKB close circuit is at 0.8 s. 

From the results in Figures 27 and 28, phases A, B and C are affected by the ferroresonance. Their 
voltage consists of the fundamental mode ferroresonance while their current consists of a 
combination of the fundamental mode and quasi-periodic mode ferroresonances. However, the effect 
of this phenomenon exists for a short time. 

Furthermore, the ferroresonance that occurs in the system leads the voltage and current at the 
suburban home to have fluctuations as shown in Figure 29. 

  

Figure 29. The voltage and current at the simulation load of a Suburban home. 

For the HV side of the distribution transformer, its voltages are not affected by ferroresonance 
since it is connected to the grid. However, the currents fluctuate due to this phenomenon, as shown 
in Figure 30. 

  
Figure 30. The voltage and current at the HV side of the distribution transformer. 

FFT of Voltage phase B
100.0

0.0
1 2 3 4 5 6 7

% [1]  43.6869

FFT of current Phase B
100.0

0.0
1 2 3 4 5 6 7

% [1]  152.53

FFT of voltage phase C
100.0

0.0
1 2 3 4 5 6 7

% [1]  43.4256

FFT of current phase C
100.0

0.0
1 2 3 4 5 6 7

% [1]  139.894

PV_Rooftop_01 : Voltage at Point of common coupling

Time [s] 0.00 0.10 0.20 0.30 0.40 0.50 0.60 0.70 0.80 0.90 1.00  
 
 

-40 

-30 

-20 

-10 

0 

10 

20 

30 

40 

V
ol

ta
g

e
 a

t 
P

C
C

 [
kV

]

Vpcc

Figure 28. The frequency spectrums of the phase voltage and current at the LV side (0.4 kV) transformer
500 kVA when the BRKB close circuit is at 0.8 s.

From the results in Figures 27 and 28, phases A, B and C are affected by the ferroresonance.
Their voltage consists of the fundamental mode ferroresonance while their current consists of
a combination of the fundamental mode and quasi-periodic mode ferroresonances. However, the effect
of this phenomenon exists for a short time.

Furthermore, the ferroresonance that occurs in the system leads the voltage and current at the
suburban home to have fluctuations as shown in Figure 29.
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Figure 29. The voltage and current at the simulation load of a Suburban home.

For the HV side of the distribution transformer, its voltages are not affected by ferroresonance
since it is connected to the grid. However, the currents fluctuate due to this phenomenon, as shown in
Figure 30.
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Figure 30. The voltage and current at the HV side of the distribution transformer.
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4.3. Case III: The Effect of Ferroresonance When Increasing the Capacity of PV Rooftop Systems from 1 kW to
500 kW

In Case III, the effects of the PV system connection at the 500 kVA transformer LV side with the
step by step increasing of the installed capacity of the PV system are shown in Table 3.

Table 3. The simulation results of the increasing installation capacity of the PV system.

PV Install
Capacity

(kW)

Vmax (kV, L-L) at
Terminal Point of

Transformer

Imax (kA) at
Terminal Point
of Transformer

Vload Max.
(kV, L-L)

Iload Max.
(kA)

Max. HD
of Voltage

(%)

Ferroresonance
Phenomena

1 0.578 3.476 0.566 0.098 27.8 Y
2 0.578 3.665 0.576 0.100 31.4 Y
3 0.580 3.739 0.577 0.100 33.2 Y
4 0.580 3.741 0.577 0.100 33.2 Y
5 0.580 3.742 0.581 0.100 33.2 Y
6 0.580 3.743 0.577 0.100 34.1 Y
7 0.580 3.746 0.577 0.100 33.1 Y
8 0.580 3.748 0.577 0.100 33.1 Y
9 0.580 3.753 0.577 0.100 33.1 Y
10 0.580 3.758 0.577 0.100 33.1 Y
20 0.603 3.986 0.601 0.104 32.8 Y
30 0.612 4.103 0.609 0.106 32.5 Y
40 0.619 4.132 0.617 0.107 33.3 Y
50 0.639 4.274 0.638 0.111 33.2 Y
60 0.659 4.366 0.658 0.114 32.6 Y
70 0.660 4.374 0.658 0.114 31.8 Y
80 0.660 4.383 0.658 0.114 33.9 Y
90 0.668 4.524 0.668 0.116 34.2 Y

100 0.690 4.728 0.688 0.119 34.7 Y
200 0.640 4.279 0.639 0.111 31.7 Y
300 0.677 4.507 0.674 0.117 35.1 Y
400 0.698 4.647 0.696 0.121 36.3 Y
500 0.716 5.302 0.715 0.124 37.8 Y

Because the installation of the PV systems grid connected in Thailand is preferred from a minimum
of 1 kW, Table 3 shows that a 1 kW PV system can lead to ferroresonance phenomena in the distribution
transformer. In addition, the voltage and current values at the terminal transformer LV side are high.
If the installed capacity of the PV system increases, the current in this area also increases and directly
affects the distribution transformer.

From these results, the researcher found that the simulation results are different in some cases.
The reasons for the differences are summarized as follows:

(1) The effect of the underground cable and distribution transformer configuration.
(2) The effect of magnetizing the core saturation from the distribution transformer used for the

voltage divider.
(3) The effect of the supply voltage to a transformer primary winding that is connected to a ground

or neutral separated wye or delta connection.
(4) The effect of the increase of the voltage source in the system which, in this case, is the PV rooftop

system on the LV side.

The results reveal that the ferroresonance overvoltage and overcurrent phenomena can happen
in this system under the saturation transformer with the capacitance of the 20 km underground
cable, the capacitance of the 200 m transmission line PI section, the nonlinear characteristic of the
1 MVA and 500 kVA transformer, and the PV system source. Moreover, the major principle of the
ferroresonance phenomena is an unbalanced switching operation. If there are differences in switching
cutouts disconnected and connected, they will cause damage to the power system. The ferroresonance
overvoltage will be 30–150 kV in the MV side, and the overvoltage will be 0.5–1 kV; the overcurrent will
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be 2–6 kA in the LV side. The effect of this situation is the generation of the destruction of the electrical
equipment and protection system. For this reason, the phenomena will not happen when three-phase
disconnected switching cutouts are operated at the same time. However, when three-phase switching
cutouts are operated at the same time, resonance transience will happen and can produce harmonic
distortion of the current in the distribution network as demonstrated in Figures 23–25.

To prevent ferroresonance occurring in a transformer accidentally energized in only one or two
phases (see Figure 3), the practical solutions consist of the following:

1. Lowering the value of the capacitance between the circuit breaker and transformer below its
critical value by using, for example, a circuit breaker cubicle closer to the transformer or placing
circuit breakers just upstream of the transformers and closing them only when the voltage has
been restored to all three-phases.

2. Avoiding use of the transformers delivering an active power which is lower by 10% than its rated
apparent power.

3. Avoiding no-load energizing.
4. Prohibiting single-phase operations or fuse protection, blowing of which results in

single-pole breaking.
5. Prohibiting live work on a cable-transformer assembly when the cable length exceeds a certain

critical length.
6. Resistance-earthing of the neutral of the supply substation.
7. Solidly earthing the neutral (permanently or only during energizing and de-energizing operations)

of a transformer whose primary is wye-connected (available neutral).

5. Conclusions

This paper presents the analysis of ferroresonance phenomena in 0.4/22 kV distribution
transformers with a PV system source using the software simulation approach. The results explain
that ferroresonance overvoltage and overcurrent will occur when the system consists of a PV rooftop
source, the capacitance in a long transmission line, a nonlinear distribution transformer with saturation
characteristic and the usage of single-phase switching cutouts in the system. In addition, when the
installed capacity of the PV system increases, the current at the terminal distribution transformer
also increases and causes damage to the distribution transformer. Typically, for the three-phases
switching cut-out and cut-in, ferroresonance will not occur. To prevent ferroresonance in a PV
grid connected system, many solutions can be applied. The usage of the three-phase switching
cutouts for connecting and disconnecting the system or the multi-pole breaking switchgear is one
of the solutions. Installing the ferroresonance suppression circuit to the transformer also prevents
the derogation. If the single-phase switching cutouts is installed, the proper sequent switching
must be considered. In addition, the distribution transformer must be in the normal condition
(without saturation characteristic). Moreover, a wide overview of this phenomenon that resulted from
simulation studies can help the operator in electrical maintenance departments to get quick possible
solutions to the problem. Therefore, it will allow the analysis of the risks and the evaluation of the
solution to be completed efficiency.
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