3,107 research outputs found

    Dynamics of short polymer chains in solution

    Full text link
    We present numerical and analytical results describing the effect of hydrodynamic interactions on the dynamics of a short polymer chain in solution. A molecular dynamics algorithm for the polymer is coupled to a direct simulation Monte Carlo algorithm for the solvent. We give an explicit expression for the velocity autocorrelation function of the centre of mass of the polymer which agrees well with numerical results if Brownian dynamics, hydrodynamic correlations and sound wave scattering are included

    Visible and Ultraviolet Laser Spectroscopy of ThF

    Full text link
    The molecular ion ThF+^+ is the species to be used in the next generation of search for the electron's Electric Dipole Moment (eEDM) at JILA. The measurement requires creating molecular ions in the eEDM sensitive state, the rovibronic ground state 3Δ1^3\Delta_1, v+=0v^+=0, J+=1J^+=1. Survey spectroscopy of neutral ThF is required to identify an appropriate intermediate state for a Resonance Enhanced Multi-Photon Ionization (REMPI) scheme that will create ions in the required state. We perform broadband survey spectroscopy (from 13000 to 44000~cm1^{-1}) of ThF using both Laser Induced Fluorescence (LIF) and 1+11+1' REMPI spectroscopy. We observe and assign 345 previously unreported vibronic bands of ThF. We demonstrate 30\% efficiency in the production of ThF+^+ ions in the eEDM sensitive state using the Ω=3/2\Omega = 3/2 [32.85] intermediate state. In addition, we propose a method to increase the aforementioned efficiency to \sim100\% by using vibrational autoionization via core-nonpenetrating Rydberg states, and discuss theoretical and experimental challenges. Finally, we also report 83 vibronic bands of an impurity species, ThO.Comment: 49 pages, 7 figure

    Exact dynamic properties of molecular motors

    Get PDF
    Molecular motors play important roles within a biological cell, performing functions such as intracellular transport and gene transcription. Recent experimental work suggests that there are many plausible biochemical mechanisms that molecules such as myosin-V could use to achieve motion. To account for the abundance of possible discrete-stochastic frameworks that can arise when modeling molecular motor walks, a generalized and straightforward graphical method for calculating their dynamic properties is presented. It allows the calculation of the velocity, dispersion, and randomness ratio for any proposed system through analysis of its structure. This article extends work of King and Altman ["A schematic method of deriving the rate laws of enzyme-catalyzed reactions," J. Phys. Chem. 60, 1375-1378 (1956)] on networks of enzymatic reactions by calculating additional dynamic properties for spatially hopping systems. Results for n-state systems are presented: single chain, parallel pathway, divided pathway, and divided pathway with a chain. A novel technique for combining multiple system architectures coupled at a reference state is also demonstrated. Four-state examples illustrate the effectiveness and simplicity of these methods

    Climate change impacts in agricultural communities in rural areas of coastal bangladesh: A tale of many stories

    Get PDF
    This paper identifies and analyses climate change impacts, their cascading consequences and the livelihood implications of these impacts on smallholder agricultural communities of coastal Bangladesh. Six physically and socio-economically vulnerable communities of south-western coastal regions were studied. Primary data was collected through focus group discussions, a seasonal calendar, and historical transect analysis. Three orders of impacts of climate change on smallholder farmers are identified and described. The first order impacts involve increasing erosion of the capacity of local communities to mitigate vulnerability to climate change impacts. This situation led to the second order impacts, which significantly transformed the agricultural landscape and production patterns. The cumulative effects of the first and second order impacts sparked the third order impacts in the form of worsening community livelihood assets and conditions. The findings of this paper can contribute to the formulation of sustainable adaptation policies and programs to manage the vulnerability of local communities to climate change impacts in the country effectively

    Dynamic correlations in stochastic rotation dynamics

    Full text link
    The dynamic structure factor, vorticity and entropy density dynamic correlation functions are measured for Stochastic Rotation Dynamics (SRD), a particle based algorithm for fluctuating fluids. This allows us to obtain unbiased values for the longitudinal transport coefficients such as thermal diffusivity and bulk viscosity. The results are in good agreement with earlier numerical and theoretical results, and it is shown for the first time that the bulk viscosity is indeed zero for this algorithm. In addition, corrections to the self-diffusion coefficient and shear viscosity arising from the breakdown of the molecular chaos approximation at small mean free paths are analyzed. In addition to deriving the form of the leading correlation corrections to these transport coefficients, the probabilities that two and three particles remain collision partners for consecutive time steps are derived analytically in the limit of small mean free path. The results of this paper verify that we have an excellent understanding of the SRD algorithm at the kinetic level and that analytic expressions for the transport coefficients derived elsewhere do indeed provide a very accurate description of the SRD fluid.Comment: 33 pages including 16 figure

    Exact dynamic properties of molecular motors

    Full text link

    Effect of Contrast, Stimulus Density, and Viewing Distance on Multifocal Steady-State Visual Evoked Potentials (MSVs)

    Get PDF
    We investigated the effects of image contrast, stimulus density, and viewing distance upon a multifocal steady-state visual evoked potential (MSV) method. Fourteen adults with normal vision (mean age = 27.0 ± 6.6 years; 6 males) participated in the stud

    Stratified community responses to methane and sulfate supplies in mud volcano deposits: insights from an <i>in vitro</i> experiment

    Get PDF
    Numerous studies on marine prokaryotic communities have postulated that a process of anaerobic oxidation of methane (AOM) coupled with sulfate reduction (SR) is the main methane sink in the world's oceans. AOM has also been reported in the deep biosphere. But the responses of the primary microbial players in eliciting changes in geochemical environments, specifically in methane and sulfate supplies, have yet to be fully elucidated. Marine mud volcanoes (MVs) expel a complex fluid mixture of which methane is the primary component, forming an environment in which AOM is a common phenomenon. In this context, we attempted to identify how the prokaryotic community would respond to changes in methane and sulfate intensities, which often occur in MV environments in the form of eruptions, diffusions or seepage. We applied an integrated approach, including (i) biochemical surveys of pore water originated from MV, (ii) in vitro incubation of mud breccia, and (iii) prokaryotic community structure analysis. Two distinct AOM regions were clearly detected. One is related to the sulfate methane transition zone (SMTZ) at depth of 30-55 cm below the sea floor (bsf); the second is at 165-205 cm bsf with ten times higher rates of AOM and SR. This finding contrasts with the sulfide concentrations in pore waters and supports the suggestion that potential AOM activity below the SMTZ might be an important methane sink that is largely ignored or underestimated in oceanic methane budget calculations. Moreover, the incubation conditions below the SMTZ favor the growth of methanotrophic archaeal group ANME-2 compared to ANME-1, and promote the rapid growth and high diversity of bacterial communities. These incubation conditions also promote the increase of richness in bacterial communities. Our results provide direct evidence of the mechanisms by which deep AOM processes can affect carbon cycling in the deep biosphere and global methane biochemistry

    High frequency dynamics in a monatomic glass

    Full text link
    The high frequency dynamics of glassy Selenium has been studied by Inelastic X-ray Scattering at beamline BL35XU (SPring-8). The high quality of the data allows one to pinpoint the existence of a dispersing acoustic mode for wavevectors (QQ) of 1.5<Q<12.51.5<Q<12.5 nm1^{-1}, helping to clarify a previous contradiction between experimental and numerical results. The sound velocity shows a positive dispersion, exceeding the hydrodynamic value by \approx 10% at Q<3.5Q<3.5 nm1^{-1}. The Q2Q^2 dependence of the sound attenuation Γ(Q)\Gamma(Q), reported for other glasses, is found to be the low-QQ limit of a more general Γ(Q)Ω(Q)2\Gamma(Q) \propto \Omega(Q)^2 law which applies also to the higher QQ region, where Ω(Q)Q\Omega(Q)\propto Q no longer holds.Comment: Phys. Rev. Lett. (Accepted
    corecore