8 research outputs found

    Bioluminescent flashes drive nighttime schooling behavior and synchronized swimming dynamics in flashlight fish

    Get PDF
    Schooling fishes, like flocking birds and swarming insects, display remarkable behavioral coordination. While over 25% of fish species exhibit schooling behavior, nighttime schooling has rarely been observed or reported. This is due to vision being the primary modality for schooling, which is corroborated by the fact that most fish schools disperse at critically low light levels. Here we report on a large aggregation of the bioluminescent flashlight fish Anomalops katoptron that exhibited nighttime schooling behavior during multiple moon phases, including the new moon. Data were recorded with a suite of low-light imaging devices, including a high-speed, high-resolution scientific complementary metal-oxide-semiconductor (sCMOS) camera. Image analysis revealed nighttime schooling using synchronized bioluminescent flashing displays, and demonstrated that school motion synchrony exhibits correlation with relative swim speed. A computer model of flashlight fish schooling behavior shows that only a small percentage of individuals need to exhibit bioluminescence in order for school cohesion to be maintained. Flashlight fish schooling is unique among fishes, in that bioluminescence enables schooling in conditions of no ambient light. In addition, some members can still partake in the school while not actively exhibiting their bioluminescence. Image analysis of our field data and model demonstrate that if a small percentage of fish become motivated to change direction, the rest of the school follows. The use of bioluminescence by flashlight fish to enable schooling in shallow water adds an additional ecological application to bioluminescence and suggests that schooling behavior in mesopelagic bioluminescent fishes may be also mediated by luminescent displays

    Foveated Thermal Computational Imaging in the Wild Using All-Silicon Meta-Optics

    Full text link
    Foveated imaging provides a better tradeoff between situational awareness (field of view) and resolution and is critical in long-wavelength infrared regimes because of the size, weight, power, and cost of thermal sensors. We demonstrate computational foveated imaging by exploiting the ability of a meta-optical frontend to discriminate between different polarization states and a computational backend to reconstruct the captured image/video. The frontend is a three-element optic: the first element which we call the "foveal" element is a metalens that focuses s-polarized light at a distance of f1f_1 without affecting the p-polarized light; the second element which we call the "perifoveal" element is another metalens that focuses p-polarized light at a distance of f2f_2 without affecting the s-polarized light. The third element is a freely rotating polarizer that dynamically changes the mixing ratios between the two polarization states. Both the foveal element (focal length = 150mm; diameter = 75mm), and the perifoveal element (focal length = 25mm; diameter = 25mm) were fabricated as polarization-sensitive, all-silicon, meta surfaces resulting in a large-aperture, 1:6 foveal expansion, thermal imaging capability. A computational backend then utilizes a deep image prior to separate the resultant multiplexed image or video into a foveated image consisting of a high-resolution center and a lower-resolution large field of view context. We build a first-of-its-kind prototype system and demonstrate 12 frames per second real-time, thermal, foveated image, and video capture in the wild

    Defined Antigen Skin Test for Bovine Tuberculosis Retains Specificity on Revaccination With Bacillus Calmette–Guérin

    Get PDF
    The Bacillus Calmette–Guérin (BCG) vaccination provides partial protection against, and reduces severity of pathological lesions associated with bovine tuberculosis (bTB) in cattle. Accumulating evidence also suggests that revaccination with BCG may be needed to enhance the duration of immune protection. Since BCG vaccine cross-reacts with traditional tuberculin-based diagnostic tests, a peptide-based defined antigen skin test (DST) comprising of ESAT-6, CFP-10, and Rv3615c to detect the infected among the BCG-vaccinated animals (DIVA) was recently described. The DST reliably identifies bTB-infected animals in experimental challenge models and in natural infection settings, and differentiated these from animals immunized with a single dose of BCG in both skin tests and interferon-gamma release assay (IGRA). The current investigation sought to assess the diagnostic specificity of DST in calves (Bos taurus ssp. taurus × B. t. ssp. indicus; n = 15) revaccinated with BCG 6 months after primary immunization. The results show that none of the 15 BCG-revaccinated calves exhibited a delayed hypersensitivity response when skin tested with DST 61 days post-revaccination, suggesting 100% diagnostic specificity (one-tailed lower 95% CI: 82). In contrast, 8 of 15 (diagnostic specificity = 47%; 95% CI: 21, 73) BCG-revaccinated calves were positive per the single cervical tuberculin (SCT) test using bovine tuberculin. Together, these results show that the DST retains its specificity even after revaccination with BCG and confirms the potential for implementation of BCG-based interventions in settings where test-and-slaughter are not economically or culturally feasible

    Bioluminescent flashes drive nighttime schooling behavior and synchronized swimming dynamics in flashlight fish

    Full text link
    Schooling fishes, like flocking birds and swarming insects, display remarkable behavioral coordination. While over 25% of fish species exhibit schooling behavior, nighttime schooling has rarely been observed or reported. This is due to vision being the primary modality for schooling, which is corroborated by the fact that most fish schools disperse at critically low light levels. Here we report on a large aggregation of the bioluminescent flashlight fish Anomalops katoptron that exhibited nighttime schooling behavior during multiple moon phases, including the new moon. Data were recorded with a suite of low-light imaging devices, including a high-speed, high-resolution scientific complementary metal-oxide-semiconductor (sCMOS) camera. Image analysis revealed nighttime schooling using synchronized bioluminescent flashing displays, and demonstrated that school motion synchrony exhibits correlation with relative swim speed. A computer model of flashlight fish schooling behavior shows that only a small percentage of individuals need to exhibit bioluminescence in order for school cohesion to be maintained. Flashlight fish schooling is unique among fishes, in that bioluminescence enables schooling in conditions of no ambient light. In addition, some members can still partake in the school while not actively exhibiting their bioluminescence. Image analysis of our field data and model demonstrate that if a small percentage of fish become motivated to change direction, the rest of the school follows. The use of bioluminescence by flashlight fish to enable schooling in shallow water adds an additional ecological application to bioluminescence and suggests that schooling behavior in mesopelagic bioluminescent fishes may be also mediated by luminescent displays

    Recent Advances in Lensless Imaging.

    No full text

    Recent Advances in Lensless Imaging.

    No full text
    Lensless imaging provides opportunities to design imaging systems free from the constraints imposed by traditional camera architectures. Thanks to advances in imaging hardware, fabrication techniques, and new algorithms, researchers have recently developed lensless imaging systems that are extremely compact, lightweight or able to image higher-dimensional quantities. Here we review these recent advances and describe the design principles and their effects that one should consider when developing and using lensless imaging systems

    Single-frame 3D fluorescence microscopy with ultraminiature lensless FlatScope

    No full text
    Modern biology increasingly relies on fluorescence microscopy, which is driving demand for smaller, lighter, and cheaper microscopes. However, traditional microscope architectures suffer from a fundamental trade-off: As lenses become smaller, they must either collect less light or image a smaller field of view. To break this fundamental trade-off between device size and performance, we present a new concept for three-dimensional (3D) fluorescence imaging that replaces lenses with an optimized amplitude mask placed a few hundred micrometers above the sensor and an efficient algorithm that can convert a single frame of captured sensor data into high-resolution 3D images. The result is FlatScope: perhaps the world's tiniest and lightest microscope. FlatScope is a lensless microscope that is scarcely larger than an image sensor (roughly 0.2 g in weight and less than 1 mm thick) and yet able to produce micrometer-resolution, high-frame rate, 3D fluorescence movies covering a total volume of several cubic millimeters. The ability of FlatScope to reconstruct full 3D images from a single frame of captured sensor data allows us to image 3D volumes roughly 40,000 times faster than a laser scanning confocal microscope while providing comparable resolution. We envision that this new flat fluorescence microscopy paradigm will lead to implantable endoscopes that minimize tissue damage, arrays of imagers that cover large areas, and bendable, flexible microscopes that conform to complex topographies
    corecore