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Abstract

Schooling fishes, like flocking birds and swarming insects, display remarkable behavioral

coordination. While over 25% of fish species exhibit schooling behavior, nighttime schooling

has rarely been observed or reported. This is due to vision being the primary modality for

schooling, which is corroborated by the fact that most fish schools disperse at critically low

light levels. Here we report on a large aggregation of the bioluminescent flashlight fish

Anomalops katoptron that exhibited nighttime schooling behavior during multiple moon

phases, including the new moon. Data were recorded with a suite of low-light imaging

devices, including a high-speed, high-resolution scientific complementary metal-oxide-semi-

conductor (sCMOS) camera. Image analysis revealed nighttime schooling using synchro-

nized bioluminescent flashing displays, and demonstrated that school motion synchrony

exhibits correlation with relative swim speed. A computer model of flashlight fish schooling

behavior shows that only a small percentage of individuals need to exhibit bioluminescence

in order for school cohesion to be maintained. Flashlight fish schooling is unique among

fishes, in that bioluminescence enables schooling in conditions of no ambient light. In

addition, some members can still partake in the school while not actively exhibiting their bio-

luminescence. Image analysis of our field data and model demonstrate that if a small per-

centage of fish become motivated to change direction, the rest of the school follows. The

use of bioluminescence by flashlight fish to enable schooling in shallow water adds an addi-

tional ecological application to bioluminescence and suggests that schooling behavior in

mesopelagic bioluminescent fishes may be also mediated by luminescent displays.
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Introduction

It is estimated that over a quarter of the world’s fish species school throughout their lives [1]

and many schooling fishes spend a large portion of their lives in schools. Behavioral and evolu-

tionary studies of schooling fishes indicate that group membership is advantageous, conferring

a lower risk of predation [2–5], greater access to food resources [6], better mate choice [7] and

reduced cost of transport [8]. Parr first proposed that schooling fish have attraction and repul-

sion forces that maintain the distance between neighboring individuals [9]. In this study, we

utilize the definition of “schooling” as the tendency of individuals to synchronize their behav-

ior and swim in an oriented, polarized manner relative to one another, whereas “shoaling” is

herein defined to be a loosely organized group of fish [10,11].

Schooling fishes rely on their ability to sense one another. Vision is widely accepted as the

most paramount schooling modality [9,12–14]; with fish schools dissipating below critical illu-

mination levels [15,16]. These minimal light levels have been defined for several species, such

as Brevoortia patronus (gulf menhaden silverside), Engraulis mordax (California anchovy), and

Trachurus symmetricus (jack mackerel), via aquarium studies [17–19], and there is correlation

between threshold light intensity for schooling and eye diameter for a number of different fish

species [17]. Light intensity thresholds for schooling have also been shown to vary depending

on a species’ lifecycle [20,21]. At twilight, fish schools gradually lose their shape and the dis-

tance between individuals rises until, at night, some species form amorphous loose aggrega-

tions consisting of what formerly comprised many different schools [4]. The ability to sense

hydrodynamic forces through the lateral line also plays a role in schooling behavior [22–26], as

fish tend to take up positions that allow them to remain close to their neighbors without

experiencing excessive turbulence.

Observations of flashlight fish (Anomalopidae) in their natural environment at night has

captured the attention of scientists for centuries and was eloquently described by Dr. Eugenie

Clark as, “like floating among the stars.” [27] Bioluminescence in flashlight fishes is driven via

symbiotic bioluminescent bacteria grown in specialized tubes within the fish’s subocular biolu-

minescent organs that assist in enhancing light output [28,29] (Fig 1). The bioluminescent bac-

teria are contained within a mass of parallel tubules up to 1 mm in length and 30–40 microns

in diameter. The tubules are aligned at right angles to the surface of the organ and the base of

each tubule abuts a reflector, which in Anomalops is comprised of two parts [30]. The main

interior reflector covers most of the inner surface of the organ and is composed of stacks of

Fig 1. Representative Anomalops katoptron imaged in this study. A) Image of adult Anomalops katoptron; B) macro of the bioluminescent organ

depicting highly vascularized structure necessary for providing oxygen to bioluminescent symbiotic bacteria.

https://doi.org/10.1371/journal.pone.0219852.g001
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guanine crystals that lie parallel to the surface. As the bioluminescent bacteria are continuously

illuminated, A. katoptron darken the light output by rotating the light organ downward, so

that only the darkly pigmented back of the organ is exposed [31]. The luminous symbiont of

A. katoptron is shown to be the bacterium, Candidatus Photodesmus katoptron (Gammapro-

teobacteria: Vibrionaceae) [32] and has genomic features in common with unrelated obligately

dependent symbionts, such as insect endosymbionts [33].

Using low-light camera technology, we investigated nighttime behavioral patterns of biolu-

minescent fishes, in their natural environment, using minimal artificial light sources. These

observations were made with no artificial lighting, since avoidance behavior from artificial illu-

mination was readily observed. This study recorded nighttime schooling behavior of thou-

sands of flashlight fish departing their shallow daytime resting caves and descending down the

reef at night. Our results demonstrate that flashlight fish use their bioluminescent flashing to

facilitate schooling at night. Flashlight fish schooling is unique in that some members of the

school do not flash (potentially decreasing chance of predation), while still participating in

group behavior. To further explore this phenomenon, we created a model of flashlight fish

schooling. We show through the combined analysis of field video recordings and modeling

that if a small cohort of fish become motivated to go in some direction (e.g. pursuing prey or

evading a predator), the rest of the fish will follow, causing a rapid and coordinated change in

the overall direction of the school.

Results

Fish observations

During two research expeditions in 2013 and 2016, large assemblages (hundreds to thousands

of individuals) of the flashlight fish species Anomalops katoptron were observed and filmed

off a remote tropical island in the Solomon Islands (S1 Fig). When diver-held lights were

used to illuminate a school of flashlight fish, the fish quickly scattered to avoid this artificial

light source (S1 Movie). In several recordings made without any artificial lighting, an entire

school of A. katoptron was captured using a Hamamatsu Photonics ORCA-Flash4.0 V2

sCMOS camera (S2 Movie). Selected for analysis are two clips (25-second and 10 seconds)

shot at 30 fps with a resolution of 2048x2048. Fig 2 shows a time-lapse of the two sets of

recorded video with timestamps shown in seconds. From this dataset, localization of fish for

every frame was conducted and tracking analysis was performed on each fish during the time

it was flashing.

School modeling

In order to model the movements of fish schools, we implemented an algorithm based on the

interactions between simulated individuals in a 3-dimensional space, mediated through three

forces: cohesion (the tendency to move towards nearby fish), alignment (the tendency to align

to the direction of movement of nearby fish), and separation (the tendency to keep a certain

distance away from other fish). Friction with the surrounding water was also modeled as a sim-

ple resistive force. These forces, taken together with relative weights based on real-world data

obtained by previous researchers [34], and applied to a large number of simulated fish, pro-

duced complex schooling behaviors similar to those observed in the video data. To simulate

the unique qualities of flashlight fish schools, the simulated fish were made to flash, so that

they would be visible to others only while flashing. The parameters of this flashing, such as fre-

quency and duty cycle, could be controlled by the user.

Bioluminescent flashes drive nighttime schooling behavior in flashlight fish
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Synchronous motion

To test whether fish in both our model and in recorded video exhibit schooling behavior, we

devised a metric, mSync, which measures the synchronicity of the fishes’ movements, and is

based on the mean speed and velocity of all the fish in a frame. mSync is defined:

mSync nð Þ ¼
mv*ðnÞ

mvðnÞ

where mv*ðnÞ is the mean velocity of all fish in frame n, and μv(n) is the mean speed of all fish in

frame n. mSync is a value between 0 and 1, where 0 indicates shoaling and 1 indicates ideal

schooling. Based on the video data (Fig 3, S2 Fig), we observe that when the fish are moving

slowly (when the average velocity of the fish is low), they are shoaling, leading to low values of

mSync. When the fish are moving faster, they switch to schooling, indicated by high values of

mSync. The tendency of fish to school when moving quickly can also be observed in the school

modeling data, to which mSync can also be applied (Fig 4, S3 Movie). To test the null hypothe-

sis that the observed movement might have no synchrony, we simulate random fish movement

and plot the corresponding mSync values (Fig 3C, S2C Fig). We compared the mSync values

of the observed movement and the simulated random movement using the Wilcoxon Rank

Sum Test [35] and obtained a p-value of the order of 10−100, rejecting the null hypothesis that

the distribution of observed data and random movement are the same.

Fig 2. Flashlight fish recording. A) Time lapse image from the recorded video of flashlight fish. The different intensities are due to fish swimming at

different depths. Closer fish are brighter than more distant fish. B) Time stamps, in seconds, corresponding to the flashes.

https://doi.org/10.1371/journal.pone.0219852.g002

Bioluminescent flashes drive nighttime schooling behavior in flashlight fish

PLOS ONE | https://doi.org/10.1371/journal.pone.0219852 August 14, 2019 4 / 19

https://doi.org/10.1371/journal.pone.0219852.g002
https://doi.org/10.1371/journal.pone.0219852


Fig 3. School motion synchrony. A) Average speed of all fish per frame. B) mSync computed per frame. We observe that when there is significant

movement within the school, i.e. large average speed, there is motion synchrony. Low mSync values are observed when the school is almost at a

standstill. C) mSync values if the fish were moving randomly. This plot was simulated with random fish movement and shows mSync is low for such a

scenario. Contrasting this plot with B), we observe that the flashlight fish are moving with synchrony in direction. D) A frame from the video indicating

high motion synchrony, corresponding to the red dashed line in plot (B). The blue circles indicate the flashing Anomalops katoptron, the purple arrows

indicate the velocity of the fish. We can observe that there is high motion synchrony when there is significant movement within the school. E) A frame

from the video indicating low motion synchrony, corresponding to the purple dashed line in plot (B). We can observe low mSync values are observed

when the school is almost at a standstill.

https://doi.org/10.1371/journal.pone.0219852.g003

Fig 4. mSync and speed. Correlation between mSync and speed in the model data.

https://doi.org/10.1371/journal.pone.0219852.g004
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Since flashlight fish can occlude their lights, presumably making themselves inconspicuous

to conspecifics under low-light conditions and potentially disrupting or preventing schooling

behavior, we used our algorithm to model the effects of these “dark fish” on schooling dynam-

ics. As can be seen in Fig 5 and S4 Movie, mSync is relatively unaffected by the number of dark

fish until they exceed 95% of the school–that is, less than 5% of the school needs to be flashing

in order to maintain school structure.

Fig 5. mSync vs. the proportion of flashing fish. A) Modeled by 5% intervals B) Modeled by 1% intervals.

https://doi.org/10.1371/journal.pone.0219852.g005
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As a first approximation, one might hypothesize that there is a strong selective advantage

for fish to be invisible, because it reduces their likelihood of being eaten by predators. Since

this is clearly not the case in our observations, there must be some other reason for fish to

maintain their flashing beyond the level required for schooling. As it has been shown that

flashlight fish use their bioluminescence for feeding [36], it seems likely that this is one reason

they do not remain invisible. Another possible reason is predator avoidance through distrac-

tion. In video data of startled fish (S5 Movie), we observed the same “blink-and-run” behaviors

seen in aquaria experiments on flashlight fish in the genus Photoblepharon [37]. Such evasive

maneuvers are synchronized with flashing–when startled by light, the flashlight fish can be

seen to flash their lights, then rapidly turn and dart away, then flash again, allowing them to

misdirect potential predators. Further, the “swarming” luminescence we observed could be

advantageous in that it might both serve to confuse a potential predator, as well as illuminate

and reveal a potential predator to secondary predation, essentially functioning as a “burglar

alarm” [38].

Motivated fish

During the recorded swimming period, the school of flashlight fish changes direction multiple

times. During these changes, we observed that 1–2 individual flashing fish would speed up

along a particular direction and the rest of the school would soon align to their movement. We

used our model to investigate this behavior and found that if only a few flashing individuals

are motivated to move in a particular direction the rest of the school will soon follow, as

shown in S6 Movie. Evidence of motivated fish can be observed in the real video data (Fig 6

and S7 Movie). To quantitatively represent the alignment of fish, we plot a directional

Fig 6. Motivated fish. (A,B) Frames from S2 Movie showing motivated fish who direct the school. The cyan circles indicate the flashing fish, the yellow

arrows indicate the velocity of the fish. Longer arrows indicate higher speeds. The motivated fish are marked with purple ovals. The motivated fish

move at higher speeds and the rest of the school align themselves to the direction of the leaders. (C) Plots showing correlation of direction of flashlight

fish with the direction of the motivated fish. We can observe that after the onset of motivated fish, the correlation increases indicating that the rest of the

fish are aligning with the motivated fish.

https://doi.org/10.1371/journal.pone.0219852.g006
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correlation metric defined as follows:

Direction correlation for nth frame ¼
P

ihvL; vii

jvLj
P

ijvij
;

where, h�,�i is the inner product between two vectors, vi is the velocity of ith fish in the nth

frame and vL is the velocity of the motivated fish. When there are two motivated fish, vL is con-

sidered as their average velocity. The value of direction correlation lies between 0 and 1.

Higher values of correlation indicate the fish are aligned with the motivated fish. The direction

correlation for a subset of frames in the S7 Movie is plotted in Fig 6C. We observe that the cor-

relation increases after the onset of the motivated fish, indicating the alignment of the rest of

the fish with the motivated fish. The flashing is crucial to convey the direction of motivated

fish to the rest of the school.

Flashing duty cycle

Analysis of the rate and duty cycle of the flashing in the video data can be seen in Figs 7 and 8.

In the latter data, for example, the fish blinked at an average rate of 3.05 ± 0.3 Hz (the peak of

the power spectrum in Fig 9A) on approximately-even intervals (shown by the histogram of

duty cycles in Fig 9B), with average “on” and “off” times of 0.166s and 0.168s, respectively.

Analysis in our model shows that schooling behavior (mSync) is insensitive to a wide range of

these parameters. It seems likely therefore that these values are primarily related to feeding,

and not to schooling.

Methods. Mborokua, Solomon Islands (9˚1’12”S, 158˚44’24”E), is an uninhabited, jungle-

covered volcanic island located 30 km west of the Russell Islands (S1 Fig). It has dramatic verti-

cal relief, from shallow bays to over 2000 m; due to its remote nature, it has experienced low

levels of human impact. Filming via SCUBA took place on September 26–27, 2013 between

18:30–20:00 (approximately 1 week before a new moon) and on October 29, 2016 and Novem-

ber 2, 2016 between 19:30–21:00 (both sides of the new moon). On the evening of September

26, 2013, after shallow SCUBA filming, a Triton 3300/3 submersible was launched off the R/V
Alucia (from 20:33–24:01) to observe the fish at greater depths.

Video imagery was collected using several types of underwater low-light imaging systems.

All video used for data analysis was recorded with a Hamamatsu Photonics ORCA-Flash4.0

V2 sCMOS camera outfitted with a Nikkor f2.8 20mm prime lens and mounted in a custom

underwater housing (Fig 10). Recordings recorded in S1 and S5 Movies were recorded with a

Nikon D800 outfitted with a 50mm f1.4 Nikkor lens mounted in an Aquatica AD800 underwa-

ter housing.

Image processing

With the Hamamatsu Photonics ORCA-Flash4.0 V2 sCMOS camera capturing at 30 fps, the

emitted bioluminescence of the flashing fish uses a maximum of 1% of the camera’s 16-bit

dynamic range. In such a low-light scenario, fixed-pattern noise (FPN) [40] of the sensor

becomes a significant issue and needs to be corrected. FPN is caused by dark currents and

refers to non-uniformity between pixels when the sensor is not exposed to light. FPN is an

additive noise and, if estimated, can be subtracted out from each frame. Since the density of

flashing fish is sparse, we can assume that each pixel in the sensor is exposed, most of the time,

to a dark point in the scene. With this assumption, we estimated the FPN by taking an average

of all the frames in the recorded video, and then subtracting this value from each video frame

before further analysis was performed. The estimated FPN had mean of 100 (out of 16-bit or

65536 possible levels) and standard deviation of 5.

Bioluminescent flashes drive nighttime schooling behavior in flashlight fish
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We are interested in the motion of the flashlight fish and, therefore, need to estimate the

position of the fish in each frame. Each frame was first thresholded to form black and white

(BW) images. The BW images were then passed through a morphological operation [41] to

omit isolated noisy pixels. The centroid was calculated for remaining white pixel regions of a

reasonable size (>20 pixels total area). These calculated centroids are the estimated positions

of the fish in each frame and were used for tracking individual fish. The trajectory of each cen-

troid was then tracked using an adaptation of MATLAB’s IDL Particle Tracking software [42].

The linking of positions between frames was done by selecting the most probable location

within a given maximum radius. Only the fish that are flashing are tracked, as the positions of

fish that are not flashing cannot be estimated.

Fig 7. Synchronous swimming. Examples showing pairs of fish swimming synchronous to each other. The color bar shows progression of time in

seconds.

https://doi.org/10.1371/journal.pone.0219852.g007
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Specimen collection

Two specimens of Anomalops katoptron were collected via SCUBA in September 2013, using a

hand net and Keldan underwater video lights, and are deposited in the AMNH Ichthyology

Collection (AMNH 264834 n = 2) (http://sci-web-001.amnh.org/db/emuwebamnh/Display.

php?i=4). Research, collecting and export permits were obtained from the Ministry of Fisheries

and Ministry of Environment, Honiara, Solomon Islands. Specimens were collected with a

hand net, transferred to the surface in plastic bags with seawater, and anesthetized/euthanized

by exposure to the sedative MS-222 following approved protocols. This study was carried out

in strict accordance with the recommendations in the Guidelines for the Use of Fishes in

Research of the American Fisheries Society (https://fisheries.org/docs/wp/Guidelines-for-Use-

of-Fishes.pdf) and approved by the American Museum of Natural History’s Institutional Ani-

mal Care and Use Committee (IACUC).

Schooling simulation

The simulation of fish movement was performed with C++ code running on the CUDA plat-

form to allow for massively-parallel processing and optimized floating-point mathematics.

The simulated environment was an empty, infinite Hilbert space with dimensions X, Y, and Z.

Positions and other 3-dimensional measurements within this space are expressed as 3-vectors

hX, Y, Zi. The representation of the fish consists of three such vectors: a position vector r, a

Fig 8. Six Anomalops katoptron tracked in the same time sequence as they bioluminesce within a school. Arbitrary units

are maximum intensity values for each flashing fish derived directly from the raw 16-bit image data after background noise

subtraction.

https://doi.org/10.1371/journal.pone.0219852.g008
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velocity vector v, and an acceleration vector a. Time within the stimulation proceeds in incre-

ments of Δt seconds. At each frame, every fish is synchronously and simultaneously updated

based on the state of the world in the previous frame. The movement of each fish is controlled

primarily by three forces, referred to as Cohesion (fc), Alignment (fa), and Separation (fs). Each

force is assigned a scalar weight which determines how strong it is in comparison with the

other forces. The weights of these three forces (wc, wa, and ws, respectively) can be set by the

user either manually or automatically at the beginning of the simulation, but are usually set to

7, 6, and 9 respectively, based on the weight and length of the flashlight fish [34]. In addition to

Fig 9. Analysis of characteristics of 234 flashes from 13 fish. A) Power spectrum of frequencies of flashes (averaged

across all 13 fish), with a peak at approximately 3 Hz. B) Histogram of duty cycles of all 234 flashes, showing a center

around 50%.

https://doi.org/10.1371/journal.pone.0219852.g009
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these social forces, there are the internal forces of friction (ff) and speed control (fv) with their

own weights (wf = 1.05 and wv = 5). Once each force is determined for a particular frame using

its weight, the forces are summed. This net force is then applied to the fish, accelerating it such

that a ¼ f tot
m , where m is the mass of the fish. Since the unit of mass in this simulation can be

arbitrarily set to be the mass of a flashlight fish, this equation simplifies to a = ftot.
In order to model the flashing of flashlight fish, a uniform random number in [0, 1] is

selected for each fish on each frame, and if this number is less than a user-defined parameter

P, the fish is considered flashing (and therefore visible) on that frame. In nature, P = 0.5, as the

duty-cycle is 50%, but this can be set to different numbers to test different duty-cycles. There is

also a parameter D, which is used in a similar fashion to determine whether a given fish will

flash at all (whether or not it is “dark”). To do this, each fish is assigned a uniform random

number R 2 [0, 1] at the start of the simulation, and if R< D, the fish is “dark”, meaning that it

Fig 10. Three-dimensional model of the underwater low-light camera used for this study. This is based on an original design described in [39].

Components are A) housed inside a 22” long, 8” diameter 2500-meter rated housing that is B) powered by a separate 259 watt-hour lithium battery

(SubC Imaging, Newfoundland CA). C) Housings are mounted onto a basic stainless steel frame along with floatation spheres to achieve neutral

buoyancy (not shown). D) Communication and power is mediated through gigabit-Ethernet enabled fiber-optic and copper conductor connectors.

E) An Intel NUC 5i5RYH computer supplied with a 4TB storage hard drive controls the F) Hamamatsu Photonics ORCA-Flash4.0 sCMOS camera

outfitted with a 20mm f2.8 prime lens, which is G) optically coupled to the housing’s acrylic viewport.

https://doi.org/10.1371/journal.pone.0219852.g010
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will not flash under any circumstances. In nature, we assume D = 0.0, as all fish presumably

flash. D and P can be made to change throughout the course of the simulation, such as in Fig 4,

where D was changed.

The force of cohesion, fc, is calculated with the expression f c ¼
sc
jscj
� vmax

� �
� v, sc ¼

Pnv
k¼1

rk
nv

where rk is the position vector of the kth visible fish, nv is the number of fish that are not

the current fish and that are visible for cohesion, and vmax is the maximum velocity a

fish is allowed to have. The force of alignment, fa, is calculated with the expression

f a ¼
sa
jsa j
� vmax

� �
� v, sa ¼

Pnv
k¼1

vk

nv
, where vk is the velocity vector of the kth visible fish.

The force of separation, fs, is calculated with the expression f s ¼
ss
jssj
� vmax

� �
� v,

ss ¼
Pnv

k¼1
dk

nv
; dk ¼

r� rk
jr� rkj

2.

Each social force has its own “region of vision”, derived from [34] which determines what

regions can be “seen” for the purposes of that force. Since Cohesion is mostly mediated visu-

ally, its region extends the furthest, but does not include 90˚ behind the fish. Separation, being

mediated both by vision and by the lateral line, includes all but 60˚ behind the fish, and extends

a much shorter distance. Since Alignment is mediated almost solely by the lateral line system,

its region of vision only consists of the regions to the sides of the fish, missing 60˚ in front and

behind, and extending a distance intermediate between Separation and Cohesion. To initialize

the simulation, each fish is generated such that each dimension of r is a uniformly-distributed

random floating-point number in [−10, 10]), v = h0,0,0i, a = h0,0,0i. In effect, the fish are

placed randomly at rest inside a cube centered on the world origin with sides 20 units in

length.

Discussion

Bioluminescence, the production and emission of light from a living organism, is a phenome-

non known to occur in over 700 genera of metazoans across the tree of life, with ~80% of these

genera being marine [43,44]. The functions of bioluminescence are diverse, exemplified by

remarkable morphological specializations that range from anatomically complex species-spe-

cific luminescent structures to variation in the biochemistry of the bioluminescent systems.

Bioluminescence serves many functions (such as offensive, defensive and mate attraction/rec-

ognition) for marine organisms, and it frequently serves multiple roles for a single organism

[44]. The flashlight fish (Anomalops katoptron) filmed in this study belong to a unique group

of bioluminescent fishes that are found in both shallow reef and deep water habitats in the

tropical Pacific, Atlantic, and Indian oceans [32].

Anomalops katoptron has been recorded from as shallow as 2 m to 400 m depth [45], with

individuals moving into deeper water to feed at night (pers. obs.). The family Anomalopidae

comprises nine species arrayed within six different genera, Anomalops, Kryptophanaron, Par-
mops, Phthanophaneron, Photoblepharon, and Protoblepharon, all of which are equipped with

a pair of oval subocular bioluminescent organs (Fig 1) that the fish controls via rotating or cov-

ering to emit and occlude symbiotic, bacterially-produced light [46]. Anomalops katoptron and

Photoblephlaron palpebratus are the two species of flashlight fishes that have been studied rela-

tively extensively. Anomalops katoptron was formally described in 1856 by Pieter Bleeker [47],

a Dutch ichthyologist and herpetologist. Photoblephlaron palpebratus was described in 1781 by

Peter Boddaert, a Dutch naturalist [48] who noted how local inhabitants used the luminescent

organ as a fishing lure, as bioluminescence lasts up to 8.5 hours after being extracted from the

fish.
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Anomalops katoptron utilize bacterially-mediated bioluminescent illumination from their

subocular light organs to detect planktonic prey and the blink frequency of their light organs is

exogenously controlled by ambient light levels [36]. A study using four individuals of P. palpeb-
ratus noted differences in flashing frequency between daytime and nighttime hours, leading

the authors to hypothesize that flashing is related to predator avoidance, intraspecific commu-

nication and feeding [37]. In that study, fish kept in complete darkness exhibited circadian

rhythms of blinking, with increased blinking frequency during daytime hours (37 blinks/min

with each blink lasting 800 ms), versus 2.9 blinks/min with each blink lasting 260 ms during

the nighttime hours. A combined field and tank study [36] found that A. katoptron exhibited

blink frequencies of approximately 90 blinks/minute at night with equal on and off times. How-

ever, in experimental tanks, open light organs (bioluminescent) time increased when the fish

were feeding compared to when prey was absent and the blink frequency decreased to 20%

compared to blink frequency in the absence of planktonic prey [36]. Anomalops katoptron with

functional bioluminescent organs have also been observed to be capable of feeding on adult

Artemia in total darkness, whereas individuals with non-functional light organs are unable to

feed at all under these conditions [observed by Rosenblatt RH in 31]. The multiplicity of usages

of bioluminescence led Morin et al. [37] to conclude that flashing function in P. palpebratus is

extensive and varied; including offensive, defensive and communicative capacities. Our results

corroborate this body of information and further demonstrate the utilization of bioluminescent

flashing to enable schooling in flashlight fishes under conditions of low to no ambient light.

While astral sources could play a role in schooling, we noted A. katoptron schooling behav-

ior on overcast nights down to ~100m and A. katoptron has been reported to ~300-400m [45,

49]. To estimate astral at depth, we calculate the transmittance at 20, 30, and 100 m conserva-

tively using a surface starlight value of 0.0002 lux (1.46 x 10−10 W/cm2) [50], and an absorption

coefficient of (0.0562 m-1) for non-turbid ocean water at 550 nm [51]. The transmittances at

these depths were 7.5%, 2.1%, and 0.15%, giving absolute intensity values of 1.10x10-11,

3.01x10-12, and 2.26x10-13 W/cm2. There is only one outlier account (based on an aquarium

study from over 50 years ago) that reports Pacific jack mackerel (Trachurus symmetricus)
schooling at such low light levels [19].

Fish schooling has previously been shown to be based on attraction, alignment and repul-

sion, the former being mediated mainly by vision, and the latter two being mediated by the

lateral line system [9,12–14]. Using low-light video cameras, we were able to record the biolu-

minescent flashes of the species A. katoptron in the wild in darkness (Fig 2). Analysis of the

field video data, using mSync, a measure of school movement synchrony, showed that A.

katoptron are indeed schooling at these low ambient light levels using bioluminescent flashing

(Figs 3 and 4 and S3 Movie). Vision is critical to schooling in fishes, and schooling has been

shown to confer a lower risk of predation [2–5], provide greater access to trophic resources

[6], lead to reduced metabolic cost of transport [8], and allow for improved mate choice [7].

Our results show that flashlight fishes use bioluminescent visual flashing cues to school at

night, as opposed to other fishes that can utilize vision to school only under conditions of suffi-

cient ambient light [15–19].

Our computer model further suggests that schooling remains stable even when only a few

percent of the fish in the school flash their bioluminescent light organ (Fig 5 and S4 Movie). It

is possible that many fish in a school could participate in schooling behavior without actively

flashing. We observed in the field videos a potential predator-avoidance strategy that has been

termed “blink-and-run” behavior [37], in which fish present a brief flash then rapidly change

direction before flashing again, presumably to confuse predators (S5 Movie). We note that this

is only speculative as no predators were observed during these displays, and that such displays

may have an entirely different function. Additionally, we used observations from our field
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video data and applied them to the model to show that a few fish, motivated to move in a par-

ticular direction can facilitate a change in direction for the entire school (Fig 6). We also show

that bioluminescent flashing in A. katoptron exhibits a relatively small range of duty cycles and

frequencies, with no appreciable correlation between the two (Figs 7–9). This raises interesting

questions as to the collective behavior of flashlight fish flashing and to the ecological and com-

municative tradeoffs of flashing rates and the duration of leaving their bioluminescent organ

open to the underwater world.

Understanding the kinetics of flashlight fish utilization of bioluminescence to school in the

dark may also have practical applications in the design of schooling “robotic fish” that can be

used for both environmental monitoring applications as well as to study behavior of other bio-

luminescent fishes by potentially mimicking luminescent signaling behavior to elicit species-

specific signaling responses [52]. This technique might be particularly useful for studying

luminescent signaling behavior in groups, such as lanternfishes (Myctophiformes), where we

have shown that lineages characterized by species-specific photophore patterns (i.e., Myctophi-

dae) are diversifying at a more rapid rate than lineages that lack species-specific patterns and

that are hypothesized to utilize bioluminescence solely as a means of ventral counterillumina-

tion (i.e., Neoscopelidae) [53].

Our results also suggest the possibility that fish schooling via bioluminescence might be

prevalent in deep-sea, mesopelagic habitats, in addition to shallow waters. Recent studies have

shown that bioluminescence has evolved many more times in marine fishes than previously

hypothesized [43], and that species-specific bioluminescent signaling is correlated with

increased diversification rates in both deep open-ocean mesopelagic habitats [53] and shallow

waters [36,37,54]. The unique, species-specific luminescent signals produced by species-rich

shallow water (e.g., Leiogathidae, ponyfishes) and deep-sea mesopelagic fish lineages (Stomii-

dae, dragonfishes; and Myctophidae, lanternfishes) could also be used to facilitate schooling in

habitats with low ambient light levels to complete darkness.

Supporting information

S1 Fig. Mborokua Island. Study site in the Solomon Islands.

(TIF)

S2 Fig. School motion synchrony for second (10 s) video set. A) Average speed of all fish per

frame. B) mSync computed per frame. We observe that when there is significant movement

within the school, i.e. large average speed, there is motion synchrony. Low mSync values are

observed when the school is almost at a standstill. C) mSync values if the fish were moving ran-

domly. This plot was simulated with random fish movement and shows mSync is low for such

scenario. Contrasting this plot with B), we observe that the flashlight fish is moving with syn-

chrony in direction. D) A frame from the video indicating high motion synchrony, corre-

sponding to red dashed line in plot (B). The blue circles indicate the flashing fish, the purple

arrows indicate the velocity of the fish. We can observe that there is high motion synchrony

when there is significant movement within the school. E) A frame from the video indicating

low motion synchrony, corresponding to purple dashed line in plot (B). We can observe low

mSync values are observed when the school is almost at a standstill.

(TIF)

S1 Movie. Photophobic flashlight fish response. Nikon D800 video of Anomalops katoptron
from Mborokua, Solomon Islands displaying photophobic response of fishes to external illu-

mination.

(MOV)
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S2 Movie. sCMOS video of flashlight fish. Example of raw Hamamatsu Photonics ORCA-

Flash4.0 V2 sCMOS video (compressed) of Anomalops katoptron school from Mborokua, Sol-

omon Islands.

(MOV)

S3 Movie. Modeled “normal” schooling behavior. Each fish in this scenario has a 50% flash-

ing percentage. Green represents a flashing (visible) fish, while red represents a non-flashing

(invisible) fish.

(MP4)

S4 Movie. “Flash and run” behavior. Startled flashlight fish exhibiting “flash and run” behav-

ior in which they flash their lights, then turn and swim away, then flash again, likely in an

attempt to confuse potential predators.

(MP4)

S5 Movie. Modeled schooling behavior over time. The value of D decreases, reaching 0% (no

flashing fish) at frame 500.

(MOV)

S6 Movie. Modeled schooling behavior of “motivated fish”. White dots represent motivated

fish.

(MP4)

S7 Movie. Schooling behavior of Anomalops katoptron video that exhibits “motivated fish”

behavior. The cyan circles indicate the flashing fish, the arrows indicate the velocity of the fish.

Longer arrows indicate higher speeds. The arrows of the motivated fish are colored magenta.

The motivated fish move at higher speeds and the rest of the school align themselves to the

direction of the leaders. The arrows of the fish that are aligned with the leaders are colored in

yellow. Arrows of rest of the fish are colored in cyan.

(MP4)
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